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1 Introduction

1.1 The importance of schooling fishes

Forage fishes such as anchovies (Engraulidae), pilchard (Clupeidae), and scads (Carangidae), function

as a trophic link between plankton and large-bodied vertebrates such as fishes, marine mammals and

seabirds, and thus play a key role in structuring marine ecosystems [1]. In addition, forage fish are also

the targets of commercial fisheries, with over 31.5 million tonnes landed per year, constituting 37 %

of the global wild marine fish catch [2]. Most forage fish catches are destined for non-food uses, such

as reduction into fishmeal and fish oil to be used in aquaculture and agriculture [1]. Forage fish can

experience rapid population increase due to high fecundity (i.e. batch spawning), early maturity and fast

growth, but they are sensitive to environmental conditions, as shown by major populations fluctuations

in response to climatic events and human exploitation [2].

Forage fish often congregate in large schools of hundreds to thousands of individuals. A school can be

defined as a set of individuals presenting a significant degree of cohesion, living in a group and exhibit-

ing synchronised movements in terms of swimming speed and body orientation [3]. Such behaviour is

primarily thought to provide a defence mechanism against predation [3], although it makes fish more

detectable and easier to catch with modern fishing techniques [4]. Schooling behaviour is also benefi-

cial for foraging [3] and generates energy savings [5], as shown by a decreased tail beat frequency and

reduced metabolic rate [6]. Despite schools increasing individual competition for food [3] and hypoxia

[5], schooling remains a very common behaviour amongst fishes. The benefits of schooling behaviour,

however, are a function of individual placement within the school. Individuals at the leading edge of the

school have greater access to resources such as food and oxygen, but are more exposed to predators and

benefit less from hydrodynamics. Consequently, fish regularly switch places within the school [5].

1.2 Effects of predator abundance

Predators affect prey populations through lethal and non-lethal effects. These effects are particularly

important in ecosystems driven by predation such as the open ocean [7]. Lethal effects represent prey

been killed by predators, while non-lethal effects include behavioural modifications to lower predation

risk [8]. Non-lethal effects are sometimes neglected, although they also regulate population sizes through

indirect ways. Indeed, shark abundance affects the behaviour of marine turtles, dugongs and dolphins [9].

Studies on non-lethal effects have given rise to the “seascape-of-fear” paradigm [8], a marine adaptation

of the “landscape-of-fear” paradigm [10], which provides an explanation for changes in prey behaviour

in relation to predator abundance.

Numerous marine predator species are declining, including marine mammals, bony fishes and sharks
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[11]. This decline in top predators is predicted to result in trophic cascades, benefiting mesopedators but

disadvantaging primary consumers [12], although classification in top and mesopredators is artificial and

depends on the ecosystem [13]. Much remains to be known about how marine top predators affect preys

behaviour, and such knowledge would strongly benefit predictions on effects of marine predator loss by

integrating risk effect [11]. Piscivorous sharks are keystone predators which regulate pelagic ecosystems

through predation at different levels [12]. Thus a decline in shark populations may result in a decrease

in predation pressure on prey populations [11]. Recent studies have confirmed this hypothesis, bringing

to light both lethal and non-lethal effects. Indeed it has been shown that shark abundance affects the

diversity, abundance, biomass, and size of reef fishes through lethal effects [14], while fish diet and body

condition are conditioned by risk effects [15]. These studies have focused on a few demersal fish families

such as Lutjanidae, Lethrinidae and Serranidae.

The non-lethal effects of different predator classes (sharks, teleosts, marine mammals, etc.) on pelagic

fish behaviour, and particularly schooling behaviour, remain unknown, as well as the consequences of

declines in predator populations for pelagic ecosystems. Although studies have been conducted about

how fish schools respond to real or simulated predator presence or attack while enclosed in a tank [16, 17]

or a net [18], they only focused on the immediate avoidance response or the position of the attacked fish.

It is also relevant to consider larger scales of predation pressure. No study to date have investigated forage

fish school characteristics in relation to the predator abundance in situ.

1.3 Schooling behaviour quantification

Schooling behaviour can be described by a set of quantitative indices, characterising both group cohe-

sion and group polarity [19]. Quantifying group cohesion requires the spatial position of each fish, in

a minimum of two but preferably three dimensions. This requires modelling each fish as a finite object

defined by a particular point such as the snout or the centre of mass [19]; the choice of this point is cru-

cial as it influences the computations. The characterisation of group polarity requires supplemental data:

body axis or direction vector for polarity, deduced from both fork and snout position, and velocity vector

for swimming synchronisation [19]. Thus, knowing fish three-dimensional positions and orientations,

we can compute a set of indices to characterise wild fish schools and investigate the effects of external

factors such as predation pressure. Similarly, quantifying the inner structure of bird flocks has been done

with analogous indices characterising both group cohesion and polarity [20].

1.4 Fish school studies

Most investigations of fish schooling behaviour have been carried out ex situ in tanks or swimming tun-

nels. Published studies have explored schooling behaviour adaptations in response to extrinsic parameters
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such as flow velocity [21], light [22], turbidity [23], oxygen level [5], predator presence [16], and preda-

tor stimulus [17]. The influence of intrinsic factors such as species [24], group size [25], body length

[26] and nutritional state [26] has also been documented, as well as the role of the lateral line and visual

acuity [27].

In these studies, fish positions are typically described in two dimensions using a single camera set up

to provide a top-down view. Such approaches, however, fail to reproduce natural schooling behaviour

and, importantly, ignore the vertical plane [26]. Alternative setups designed to describe fish position

in three dimensional space have used 45 degrees inclined [28] or vertical [21] mirrors, side-cameras in

addition to the top-camera [25], stereo cameras [29], or records of fish shadows given appropriate lighting

[29, 24, 27, 16]. These methods are well adapted to describe the inner structure of fish schools as well as

immediate responses to controlled conditions, but the number of individuals on which they can be tested

remains limited, and fish behaviour might be altered by human handling.

By contrast, field studies routinely rely on multibeam sonars to quantify global school properties such as

overall shape or volume. However, active acoustics methods provide very limited information with re-

spect to the internal school structure and does not support species identification. In particular, multibeam

sonar cannot be used to readily identify species, and the poorly known acoustics properties of sharks

make them difficult to detect by echo-sounding.

Global fish school properties can also be investigated from aerial photography [30], in which the vertical

dimension is often neglected. This approach is not limited to schooling forage fish, and has been used,

for instance, to investigate the behaviour of seal herds under high predation risk by sharks [31]. As a

compromise between in and ex situ studies, enclosing nets and echo-sounders have been used to quantify

the three-dimensional position of fish in relation to simulated predator attacks [18].

1.5 Underwater baited videography

Here we proposed a novel approach to the study of schooling forage fish based on underwater baited

stereo-videography. This method allows extraction of fish position in three dimensions in wild fish

schools. Similar methods of stereo-photography and stereo-videography have been developed to study

the inner structure of in situ bird flocks in three dimensions [20]. Underwater baited videography is an ac-

curate, non-lethal and cost-effective way to study marine species, particularly applicable to environments

inaccessible to SCUBA divers [32, 33]. Unlike standard videography, baited video systems actively at-

tract wildlife to the camera field of view to maximise the detection of a large suite of often elusive species

but does not bias the relative abundance of trophic classes [34].

This technique has been shown to survey greater intraspecific and interspecific diversity than other meth-

ods such as unbaited stationary video systems, diver operated video transects, or fish traps [34]. Mid-
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water baited remote underwater stereo-video systems (stereo-BRUVS) are an adaptation of baited videog-

raphy that allow quantitative measurements of body length and three-dimensional position in the pelagic

environment [32, 33]. This method, by allowing collection of fish three-dimensional position, is thus

well adapted to study the inner structure of wild fish schools.

1.6 Decapterus: the model taxon

Here we present an application of three-dimensional quantification based on stereo-videography to study

the schooling behaviour of scads (Decapterus sp.) in response to predator abundance. Scadswere selected

as the focal taxon as they are small pelagic fish vulnerable to numerous species of predators (Figure 1).

They display schooling behaviour and have been observed on video across a range of locations that varied

in predator abundance. The Decapterus genus includes 10 species, representing a range of size between

10 and 30 cm for mature individuals and can be hard to identify at the species level on video. The different

species of Decapterus are found worldwide and, according to the FAO, they represent the eighth most

important catch in 2014, with nearly 1.5 million tonnes landed. Scads are thus well adapted for a case

study of the effects of predator abundance on schooling behaviour.

4 cm

Figure 1 – Subpart of a Decapterus sp. school, the model taxon used in this study as schooling forage fish.

Using data from diverse locations, we explore the three-dimensional effects of predator abundance on

forage fish using Decapterus as a model system. Our working hypothesis is that higher predation risk

leads to denser fish schools. This work provides key information on the adaptations of fish schooling

behaviour to predation pressure at a range of spatial scales, following on the recommendations of [35]

that studies of risk effects (1) incorporate multiple scales, (2) consider ”true” or background predation

risk and (3) evaluate multiple competing hypotheses.

2 Material and methods

2.1 Video recording with mid-water BRUVS

Baited remote underwater stereo-video systems (stereo-BRUVS) are a non-lethal sampling method for

underwater ecosystems. Originally developed for deployment on the seabed, they have been modified to
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sample pelagic species in the mid-water environment [32, 33, 36]. Mid-water stereo-BRUVS consists of

two GoPro cameras placed on a horizontal base bar, separated by 80 cm and converging inwardly at an

angle of 4 degrees. The fields of view from both cameras thus overlap, which allows fish body lengths to

be measured and the positions of individuals in three-dimensional space to be determined using epipolar

geometry. A horizontal bait arm (180 cm) is placed perpendicularly to the base bar, carrying a bait canister

made of a 45 cm long perforated PVC pipe filled with 1.5 kg of fish bait (pilchard or sardine). A weighted

vertical rig (160 cm) is placed orthogonally to the two bars and is linked to surface buoys such that the rig

is suspended at approximately 10 m (Figure 2). Wave-induced motion is limited by using a bungee cord

that acts as a shock absorber. BRUVS are typically set in “strings” of 5 replicates separated by 200 m

across a long line, for a total distance of 800 m. The string is not anchored and drifts for two hours [33].

Each string is fitted with a flag as well as a GPS tracking unit or a VHF transponder to follow its position.

Drop and pick-up coordinates and time are registered for each BRUVS.

(a) (b)

Figure 2 – Schematic representation of a stereo-BRUVS, full view (a) and dimensions (b).
Credits: Centre for Marine Futures.

2.2 Sampling locations

Since 2012, the Marine Futures Lab at the University of Western Australia (www.meeuwig.org) has con-

ducted field expeditions in 39 locations globally, gathering pelagic video footage from approximately

3,500 mid-water BRUVS deployments. The locations span 67 degrees of latitude (-37.9° to 30.1°) and

343 degrees of longitude (-178.5° to 164.8°) and encompass the range of our model taxon. After re-

viewing the global database, five locations were selected (Table 1, Figure 3) on the basis that multiple

schools (n > 4 individuals) of Decapterus sp. were observed across a gradient of predator abundances

representative of the variation across sampled locations. We selected six independent schools that varied
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in size and that were recorded on six independent longlines at each of Revillagigedo Islands, the British

Indian Ocean Territory, the Cocos (Keeling) Islands, Ningaloo Reef and four schools for Palau, for a total

sample size of 28 schools.

Table 1 – Description of field expeditions from which samples were selected.

Expedition Year Start date Finish date Latitude (dd) Longitude (dd) N n

Chagos - PCI* II 2015 10-Jan 24-Jan − 6.3557 72.4434 260 6
Cocos (Keeling) 2016 13-Nov 11-Dec −12.1325 96.8366 105 6
Ningaloo 2016 15-Sep 22-Sep −21.8418 113.5772 79 6
Palau - PS** 2014 2-Sep 22-Sep 7.4299 134.4550 147 4
Revillagigedo - PS** 2016 30-Mar 11-Apr 19.0469 −111.0612 75 6

Total 666 28

* Pangea Chagos Initiative (www.meeuwig.org/projects/pangaea-initiative)
** Pristine Seas (www.nationalgeographic.org/projects/pristine-seas)
dd = decimal degrees, N = number of samples available, n = number of schools selected.

Figure 3 – Map of selected sampling locations. n = number of samples available.

2.3 Metrics from BRUVS

Imagery from the field programme was analysed using the EventMeasure software (www.seagis.com.au).

Every animal present in recordings was identified to the lowest possible taxonomic level. Relative abun-

dance was estimated as the maximum number (MaxN) of individuals of a given taxon observed in a single

frame. Measurements were made where the fish were seen on both cameras simultaneously and no far-

ther than 10 m away from rig. For each school, we selected the frame containing the largest number of

Decapterus individuals that can be measured, and measured the snout (S) and fork (F) position of each
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schooling fish, where possible. Doing so allowed us to obtain the three-dimensional position of every

fish, as well as spatial orientation.

Predators were defined as any animal identified on the stereo-BRUVS having a trophic level greater than

4.3 (Table 2), which is consistent with known trophic values for carnivorous sharks and bony fish [12].

MaxN was also used as an index of relative abundance, and MaxN values were summed for each sample

to obtain an overall predator abundance index. From this, the average predator abundance was calculated

per string and per location. We considered two categories of predators, namely (1) sharks only and (2)

all predators (Table 2) including sharks, teleosts and marine mammals, as these taxa may differentially

interact with forage species.

2.4 Computation of school characteristics

For each school, snout and fork positions of each fish in three-dimensional space were used to compute a

set of quantitative parameters usingMATLAB R2018a. These two positions were first used to determine

the body axis of each fish. Fish positions were taken to be the point Ep as the approximate projection

of eye position on the body axis, located 0.15 fork length (FL) away from the snout. We also defined

Ec as the projection of the eye position (E) on the coronal plane (Figure 4). Measurements of snout and

fork positions could not be completed on every fish because some were hidden by a conspecific, another

animal, floating debris, or the bait arm. In such cases, we used E and either S or F positions, assuming

that E and Ec coincide, i.e. E belongs to the coronal plane. To do this we defined the angles α and β,

respectively Ep SEc
∧

and Ep FEc
∧

(Figure 4). Where only S and E were known, body axis was computed

using the average value of α of other fish and Ep was placed on the body axis distant of 0.15 FL from

S. Where only F and E were known, body axis was computed using the average value of β and Ep was

placed on the body axis distant of 0.85 FL from F. The three-dimensional position and orientation of

each fish were then used to compute the following set of quantitative indexes for each school: nearest

neighbour distances to first (NND1), second (NND2) and third (NND3) neighbour, NND1/NND2 and

NND2/NND3 ratios (homogeneity thereafter), mean distance to school centre (expanse thereafter), visible

volume, density and polarity index. Each index is described in more detail below.

2.4.1 Nearest neighbours distances

The distance between any given individual and all others can be calculated based on the three-dimensional

position of each fish inside a school. The distance Dij between two fish i (xi, yi, zi) and j (xj , yj , zj) in

space is given by the formula:

Dij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2
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Figure 4 – Eye position, projection on coronal plane and body axis and definition of angles α and β. Full view (a)
and zoom at the eye level (b). S = snout, F = fork, E = eye, Ec = projection of eye position on coronal plane, Ep =
projection of eye position on body axis.
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Table 2 – List of predators and their repartition into predator categories.

Binomial Common Name Trophic level* All predators Sharks

Acanthocybium solandri wahoo 4.34 y n
Carangoides fulvoguttatus yellowspotted trevally 4.40 y n
Caranx ignobilis giant trevally 4.35 y n
Carcharhinus albimarginatus silvertip shark 4.35 y y
Carcharhinus amblyrhynchoides graceful shark 4.22 n y
Carcharhinus amblyrhynchos blacktail reef shark 4.31 y y
Carcharhinus amboinensis pigeye shark 4.29 n y
Carcharhinus brachyurus copper shark 4.50 y y
Carcharhinus brevipinna spinner shark 4.35 y y
Carcharhinus cautus nervous shark 4.23 n y
Carcharhinus falciformis silky shark 4.46 y y
Carcharhinus galapagensis Galapagos shark 4.29 n y
Carcharhinus leucas bull shark 4.33 y y
Carcharhinus limbatus blacktip shark 4.42 y y
Carcharhinus longimanus oceanic whitetip shark 4.28 n y
Carcharhinus obscurus dusky shark 4.35 y y
Carcharhinus plumbeus sandbar shark 4.36 y y
Carcharhinus sorrah spot-tail shark 4.23 n y
Carcharhinus sp requiem sharks 4.32 y y
Carcharhinus tilstoni Australian blacktip shark 4.37 y y
Coryphaena equiselis pompano dolphinfish 4.50 y n
Coryphaena hippurus common dolphinfish 4.43 y n
Delphinus delphis common dolphin 4.50 y n
Euthynnus affinis kawakawa 4.49 y n
Galeocerdo cuvier tiger shark 4.48 y y
Grammatorcynus bicarinatus shark mackerel 4.50 y n
Gymnosarda unicolor dogtooth tuna 4.50 y n
Istiompax indica black marlin 4.48 y n
Istiophoridae sp billfishes 4.48 y n
Istiophorus albicans Atlantic sailfish 4.46 y n
Istiophorus platypterus Indo-Pacific sailfish 4.50 y n
Isurus oxyrinchus shortfin mako 4.41 y y
Kajikia audax striped marlin 4.50 y n
Lamna nasus porbeagle 4.47 y y
Makaira mazara Indo-Pacific blue marlin 4.46 y n
Makaira nigricans blue marlin 4.44 y n
Mesoplodon densirostris Blainville’s beaked whale 4.38 y n
Orcinus orca killer whale 4.60 y n
Prionace glauca blue shark 4.36 y y
Pseudorca crassidens false killer whale 4.50 y n
Rhizoprionodon acutus milk shark 4.17 n y
Scomberoides tol needlescaled queenfish 4.31 y n
Scomberomorus commerson narrow-barred Spanish mackerel 4.44 y n
Scomberomorus munroi Australian spotted mackerel 4.32 y n
Scomberomorus sp Spanish mackerels 4.36 y n
Seriola hippos samson fish 4.32 y n
Seriola rivoliana longfin yellowtail 4.48 y n
Seriola sp amberjacks 4.32 y n
Sphyraena barracuda great barracuda 4.50 y n
Sphyraena jello pickhandle barracuda 4.50 y n
Sphyraena sp barracudas 4.32 y n
Sphyrna lewini scalloped hammerhead 4.15 n y
Sphyrna mokarran great hammerhead 4.38 y y
Sphyrna sp hammerheads 4.24 n y
Sphyrna zygaena smoooth hammerhead 4.32 y y
Stenella attenuata pantropical spotted dolphin 4.47 y n
Stenella frontalis Atlantic spotted dolphin 4.50 y n
Stenella sp oceanic dolphin 4.50 y n
Tasmacetus shepherdi Shepherd’s beaked whale 4.50 y n
Thunnus albacares yellowfin tuna 4.45 y n
Thunnus obesus bigeye tuna 4.49 y n
Tursiops truncatus bottlenose dolphin 4.50 y n
Ziphiidae sp beaked whales 4.50 y n

*Trophic levels were found on FishBase (www.fishbase.org) for fishes and on SeaLifeBase (www.sealifebase.org) for other
taxa. For unidentified species, trophic level was taken as the genus mean trophic level.
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From the interdistance between each fish in the school, the mean nearest neighbour distance (NND) was

computed as:

NND =
1

n

n∑
i=1

min
i ̸=j

Dij

Similar computation was done for second and third neighbours. All these distances were expressed as a

function of the mean FL of the considered school to allow comparison between schools [19].

2.4.2 Homogeneity

To assess school structure homogeneity, we calculated the NND1/NND2 and NND2/NND3 ratios. The

closer these ratios are to one, the more regularly the school is structured locally [19].

2.4.3 School expanse

Average distance to the centre of gravity C of the school was computed as an index of the group expanse

ϵ. C coordinates (xC , yC , zC) were respectively calculated as the average of x, y and z values [19].

ϵ =
1

n

n∑
i=1

√
(xi − xC)2 + (yi − yC)2 + (zi − zC)2

with xC =
1

n

n∑
j=1

xj ; yC =
1

n

n∑
j=1

yj and zC =
1

n

n∑
j=1

zj

This metrics is also standardised for the mean for length of the school.

2.4.4 Visible school volume

We used two methods to calculate the volume occupied by a group of fish: the convex hull and the

alpha shape. A convex hull is the minimal convex envelope containing an entire point cloud, while

alpha shapes account for concavities of a given radius [20]. For the later, radii were chosen such that

the computed volume equalled the volume of the smallest polyhedron containing all the individuals.

Accordingly, convex hulls give an upper estimate of the volume while alpha shapes give a lower estimate,

and conversely for density. Because we are likely to work on schools subparts, we could only compute a

visible volume, which is not indicative of the global school volume. Thus, this piece of information cannot

be used to draw conclusions about the whole school size, but reported to the number of fish it provides

a measurement of the school packing. In any case, the volume was expressed as a cubic function of the

mean FL for the considered school to standardise for variation in fish size.
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2.4.5 School density

With the number of individuals in a visible school volume, a local density was estimated as a number

of individuals per volume, expressed in FL-3 such that it is standardised. Assuming that the school is

homogeneous, global school density can be considered equal to local density.

2.4.6 Polarity index

For each fish, body direction was computed from the body axis vector, deduced from snout and fork po-

sition, the norm of this vector being the FL. After standardisation (norm = 1), a mean vector representing

the direction toward which the school is moving was calculated. The group polarity Φ is the mean angle

deviation between the group mean vector (G⃗V ) and each fish vector (f⃗i) in three-dimensional space.

Φ =
1

n

n∑
i=1

arccos
G⃗V · f⃗i

∥G⃗V ∥ × ∥f⃗i∥

This value is comprised between 0 (high polarity) and π/2 (no polarity). Φ was converted to a non-

dimensionalised variable defined by Φ∗ = (π2 −Φ)/π
2 . Thus Φ

∗ is an index between 0 (no polarity) and

1 (high polarity) [25].

2.5 Statistical analysis

To asses whether fish schools are tighter in areas with higher predator abundance, we built linear re-

gression models to describe fish school attributes as a function of eight explanatory variables reflecting

competing hypothesises [35]. The first four explanatory variables relate to predator abundance and allow

us to test our core hypothesis on the influence of predation risk: all predators per string, all predators per

expedition, sharks per string and sharks per expedition. We also included four variables to control for

variability in the inherent attributes of the schools: number of fish, mean fork length; and the proportions

of fish on the border of the school for the convex hull and alpha shape estimates (Table 3). We used

combinations of these predictors to build 39 linear regression models containing between one and three

explanatory variables which are not correlated (absolute value of Spearman’s r < 0.6) (Table 4) in order

to predict school attributes. Models were then ranked based on their Akaike information criterion (AIC)

scores, obtained from the MuMIn package in R 3.4.3. Models with a ∆(AIC) value higher than 2 were

rejected, and AIC weights (wAIC) were recomputed based on this subset. All models were checked for

meeting global validation of linear model assumptions (GVLMA) with a level of significance of 5%,

using the R gvlma package, and models which did not meet these assumptions were rejected. Variance

partitioning analysis was done with the R vegan package. Volume and density values were converted

to decimal logarithm to reduce skewness given the large range of values observed. All variables were
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standardised by subtracting the mean and dividing by two standard deviations.

3 Results

3.1 Predictors

We assessed 28 schools from six locations, varying in size from 6 to 51 individuals, with a mean fork

length range between 20 cm and 34 cm (Table 3).

Of the eight predictor variables, the proportion of fish on the school border for the convex hull was pos-

itively correlated with that for the alpha shape (Spearman’s r = 0.67, p < 0.001). These two variables

were also negatively correlated with the number of fish in the school (r =−0.87, p < 0.01 and r =−0.65,

p < 0.01 respectively). Predator and shark abundance were strongly correlated, both at the string (Spear-

man’s r = 0.80, p < 0.01) and expedition level (r = 1.00, p < 0.001). Measures of shark abundance were

correlated at both the expedition and the string level (r = 0.70, p < 0.01), as was predator abundance (r

= 0.81, p < 0.01) (Table 4). This result shows that predator and shark abundance are consistent between

the string and the expedition level. All of the other 19 combinations of predictors were not correlated

with Spearman’s r between −0.6 and 0.6 (Table 4).

Table 3 – Summary of raw explanatory and response variables used in models of fish school attributes.

Variable Units Abbrev. Min Med Mean Max Std

Predators
Mean number of sharks per string 1 SS 0.00 0.00 0.57 4.00 1.04
Mean number of sharks per expedition 1 SE 0.01 0.46 0.62 1.63 0.59
Mean number of all predators per string 1 PS 0.00 0.30 1.70 20.33 4.05
Mean number of all predators per expedition 1 PE 0.11 0.57 1.44 4.67 1.76

School attributes for standardisation
Number of fish per school 1 FN 6.00 14.50 19.71 51.00 13.15
Mean fork length of fish per school cm FL 0.02 0.07 0.09 0.34 0.06
Proportion of fish on border of alpha shape 1 BFAS 0.81 1.00 0.97 1.00 0.05
Proportion of fish on border of convex hull 1 BFCH 0.40 0.72 0.71 1.00 0.18

School attributes to be predicted
Mean distance to closest 1st neighbour* FL NND1 1.30 2.15 2.34 4.43 0.89
Mean distance to closest 2nd neighbour* FL NND2 1.75 3.01 3.13 6.64 1.28
Mean distance to closest 3rd neighbour* FL NND3 2.11 3.49 3.79 8.20 1.59
Mean distance to the school centre (expanse)* FL Exp 1.67 4.00 4.78 11.99 2.47
School volume based on alpha shape*† FL3 VolAS 1.61 51.83 192.24 901.59 258.85
School volume based on convex hull*† FL3 VolCH 2.03 92.46 409.23 1967.10 607.30
Fish density based on alpha shape*† FL-3 DenAS 0.03 0.26 0.57 4.35 0.89
Fish density based on convex hull*† FL-3 DenCH 0.01 0.15 0.37 3.45 0.66
Mean deviation angle to the school direction‡ 1 Pol 0.26 0.77 0.72 0.91 0.17
Homogeneity between 1st and 2nd nearest neighbour distance 1 Hom12 0.55 0.78 0.76 0.88 0.07
Homogeneity between 2nd and 3rd nearest neighbour distance 1 Hom23 0.45 0.64 0.64 0.72 0.06

* standardised for fork length
† converted to decimal logarithm
‡ non-dimensional variable between 0 (no polarity) and 1 (high polarity)
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Table 4 – Spearman’s r values for predictor correlations.

FN FL BFCH BFAS PS SS PE SE

FN 1.00
FL −0.34 1.00
BFCH −0.87 0.29 1.00
BFAS −0.65 0.27 0.67 1.00
PS 0.00 −0.24 −0.02 0.14 1.00
SS 0.05 −0.31 0.00 0.08 0.80 1.00
PE 0.07 −0.09 −0.02 0.24 0.81 0.70 1.00
SE 0.07 −0.09 −0.02 0.24 0.81 0.70 1.00 1.00

Values between −0.6 and 0.6 are in bold. Acronyms are spelled out in Table 3.

Table 5 – Equations of the best model for each school attribute for which an appropriate model was found.

Metric Equation R2 R2
pred wAIC ER

NND1 = 0.69 (0.14) · SE** 48.0% 48.0% 1.000 –
Hom23 = − 0.40 (0.18) · BFCH* 15.7% 0% 0.434 1.28
Exp = 0.57 (0.13) · SE** + 0.50 (0.13) · FN** 54.6% 31.4% 0.506 1.91
log (VolCH) = 0.51 (0.10) · PE** + 0.76 (0.10) · FN** 75.8% 25.9% 0.432 1.05
log (VolAS) = 0.51 (0.10) · SE** + 0.72 (0.10) · FN** 75.3% 25.7% 0.455 1.24
log (DenCH) = − 0.62 (0.12) · SE** − 0.51 (0.12) · FN** 62.7% 38.7% 0.388 1.17
log (DenAS) = − 0.62 (0.13) · SE** − 0.48 (0.13) · FN** 59.7% 38.7% 0.644 1.81

* p-value < 0.05, ** p-value < 0.01. Metric acronyms are spelled out in Table 3.
R2

pred = variance explained by predator abundance, wAIC = AIC weight, ER = evidence ratio of the best model compared to
the second best model. All models in this table met the global validation of linear models assumptions.

3.2 Effects of predator abundance on school structure

3.2.1 Nearest neighbour distances

One model was selected for NND1, including only SE. This model explained 48.0% of the variance

(Table 5, Figure 5). In this model, the parameter associated with SE was positive (p < 0.01), thus NND1

was bigger in areas with higher predator abundances.

The models selected by AIC for NND2 and NND3 did not meet the GVLMA (Table 6) and were thus

rejected.

3.2.2 Homogeneity

Of the ten models selected by AIC for Hom12, none met the GVLMA (Table 6).

Three models were considered for Hom23. The best model only included BFCH, explained 15.7% of the

variance (p = 0.037) and had a wAIC value of 0.434 (Table 5). The two other models included BFCH and

a predator attribute, SE or PE. These models respectively explained 22.2% and 19.9% of the variance,

and had relatively similar support from the data as shown by the wAIC values: 0.339 for the model with

BFCH and SE, 0.227 for the model with BFCH and PE (Table 6). However, in both models the parameter

associated with the predator attribute was not significant (p = 0.161 for SE and p = 0.262 for PE).

Thus we could not find a relation between homogeneity of interdistances and predator abundance.
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Figure 5 – Linear regression of distance to first nearest neighbour (NND1) against sharks per expedition (SE).
95% confidence interval is shown in grey.

3.2.3 School expanse

Three models were selected for school expanse. The best model included SE and FN, explained 54.6% of

the variance (p < 0.01) and had awAIC value of 0.506 (Table 5), making this model twice more likely than

the two other ones. The two other models (SE + BFCH and PE + FN) explained a little less variance (R2

= 52.4% and 51.9% respectively) and had similar wAIC values (0.265 and 0.229 respectively) (Table 6).

In all models, predator attributes explained more variance than intrinsic fish school attributes. In the best

model, including SE and FN, SE explained 31.4% of the variance (Table 5). Variance partitioning was

similar for the two other models.

The parameter associated with FNwas positive (Table 5), showing that distance to school centre increases

with FN, as expected. In all models, the parameter associated with predator abundance was positive, thus

distance to school centre increases with predator abundance.

3.2.4 Visible school volume

Three models were selected for each computation of visible school volume.

For the convex hull computation, the best model included PE and FN. It explained 75.8% (p < 0.01) of

the variance and had a wAIC value of 0.432. The best model for the alpha shape computation included

SE and FN, it explained 75.3% (p < 0.01) of the variance and had a wAIC value of 0.455 (Table 5). These

two models are as likely as the second ones (SE and FN for VolCH, PE and FN for VolAS), as shown by

the similar wAIC values (Table 6). For both computation, FN explained more variance than the predator

attribute (25.9% of variance explained by PE for convex hull and 25.7% explained by SE for alpha shape)

(Table 5).

The parameter associated with FN was positive (p < 0.01), showing that visible volume increased with
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FN, as expected. The parameter associated with SE was also positive (p < 0.01), thus visible volume

increased with predator abundance.

3.2.5 School density

Three models were selected for density computed by convex hull and two models were selected for the

alpha shape computation. The best model for DenCH included SE and FN. It explained 62.7% of the

observed variance (p < 0.01) and had a wAIC value of 0.388 (Table 5). Thus this model is slightly more

likely than the two other ones, whichwere SE +BFCH and PE + FN,with respectivewAIC values of 0.332

and 0.280 (Table 6). In all models, the predator attribute (SE or PE) explained more variance than the

other parameter (38.7% of variance explained by SE in the best model including SE and FN) (Table 5).

In the best model, the parameters associated with FN and SE were both negative (p < 0.01 for both

parameters). Thus density computed by convex hull decreased with FN and with predator abundance.

Concerning density computed by alpha shape, the best model included SE and FN (Table 5). This model

explained 59.7% (p < 0.01) of the variance and had a wAIC value of 0.644, making it twice more likely

than the second model, which included PE and FN, explained 58.0% (p < 0.01) of the variance, and had

a wAIC value of 0.356 (Table 6). In both models, predator attribute explained more variance than FN

(38.7% of variance explained by SE in the best model including SE and FN) (Table 5). Still in this model,

the parameters associated with FN and SE were both negative (p < 0.01 for both parameters). Thus, for

both computation, density decreased with both FN and predator abundance.

3.2.6 Polarity index

Themodels selected by AIC for polarity index did not meet the GVLMA (Table 6) and were thus rejected.

4 Discussion

4.1 Predator abundance affects schooling behaviour

We found that predator abundance changes forage fish schooling behaviour such that school size gener-

ally increased with increasing numbers of predators. NND1, expanse and visible volume all increased

with predator abundance while density decreased. This result was unexpected because it has often been

proposed that higher predation risk will make schools more compact [37]. The exception was homogene-

ity that did not seem to be affected by predator abundance. Moreover, none of the model that we built

was appropriate to explain the variation in school polarity.

Possible explanations are that predation pressure is not important enough to force fish to school in a

tighter way, and that schooling behaviour is driven by other environmental factors. One factor known
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Table 6 – All models selected by AIC.

Metric Model Explanatory Variables R2 wAIC wAIC/wAICbest GVLMA

NND1 Model 1 SE** 48.0% 1.000 1.000 y

NND2
Model 1 SE** 30.0% 0.477 1.000 n
Model 2 PE** 28.4% 0.347 0.727 n
Model 3 SE**, BFAS 31.8% 0.176 0.369 n

NND3

Model 1 SE** 30.8% 0.335 1.000 n
Model 2 PE** 29.3% 0.248 0.740 n
Model 3 SE**, BFAS 33.3% 0.145 0.433 n
Model 4 SE**, BFCH 33.2% 0.140 0.418 n
Model 5 SE**, FN 32.9% 0.133 0.397 n

Hom12

Model 1 SE 6.5% 0.199 1.000 n
Model 2 PE 3.8% 0.134 0.673 n
Model 3 SS 3.2% 0.122 0.613 n
Model 4 FL 2.1% 0.105 0.528 n
Model 5 PS 1.4% 0.095 0.477 n
Model 6 BFCH 1.2% 0.092 0.462 n
Model 7 FN 0.7% 0.087 0.437 n
Model 8 SE, FL 9.8% 0.085 0.427 n
Model 9 BFAS 0.3% 0.082 0.412 n

Hom23
Model 1 BFCH* 15.7% 0.434 1.000 y
Model 2 SE, BFCH* 22.2% 0.339 0.781 y
Model 3 PE, BFCH* 19.9% 0.227 0.523 y

Exp
Model 1 SE**, FN** 54.6% 0.506 1.000 y
Model 2 SE**, BFCH** 52.4% 0.265 0.524 y
Model 3 PE**, FN** 51.9% 0.229 0.453 y

log (VolCH)
Model 1 PE**, FN** 75.8% 0.432 1.000 y
Model 2 SE**, FN** 75.7% 0.404 0.935 y
Model 3 PE**, FN**, BL 76.7% 0.165 0.382 y

log (VolAS)
Model 1 SE**, FN** 75.3% 0.455 1.000 y
Model 2 PE**, FN** 74.9% 0.368 0.809 y
Model 3 PE**, FN**, BL 76.2% 0.177 0.389 y

log (DenCH)
Model 1 SE**, FN** 62.7% 0.388 1.000 y
Model 2 SE**, BFCH** 62.3% 0.332 0.856 y
Model 3 PE**, FN** 61.8% 0.280 0.722 y

log (DenAS) Model 1 SE**, FN** 59.7% 0.644 1.000 y
Model 2 PE**, FN** 58.0% 0.356 0.499 y

Pol Model 1 PS* 19.6% 0.667 1.000 n
Model 2 BFAS, PS* 23.3% 0.333 0.499 n

* p-value < 0.05, ** p-value < 0.01. Metric acronyms are spelled out in Table 3.
wAIC = AIC weight, GVLMA = global validation of linear model assumptions.
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to affect fish schooling behaviour is oxygen level. Ex situ studies have shown that school exposed to

hypoxia are less packed, as shown by increased length, area and volume, until school disruption [5],

but these results vary among species. These effects are exacerbated in a school, where oxygen level is

decreasing because of fish’s consumption [5]. This could explain why we found that density decreases

with fish number. In the light of oxygen effect, one hypothesis to explain our result is that fish maintain

higher distances between each other in areas with a higher predation risk, increasing the available volume

per fish so that each fish have access to a bigger oxygen reserve if needed. Indeed, according to the gill

oxygen limitation theory [38], fish are already on the high limit of oxygen consumption. Thus, schooling

fish have access to less oxygen than non schooling fish, but this is counter-balanced by energy savings

provided by schooling behaviour. However, this limit in oxygen availability turns out to be a limit for

metabolism, and a sudden need for oxygen, to escape from a predator for example, might not be covered

by the available oxygen, leading to an oxygen debt. Hence, looser schools might be an appropriate way

to ensure escaping ability for schooling fish under higher predation pressure.

All metrics of predators showed very similar results, regardless if all predators or sharks only where

included, although models including sharks instead of all predators often had better AIC rankings. For

all the selected models including a predator attribute, this predator attribute was always computed at the

expedition level, showing that global predator abundance is more relevant.

All metrics except NND1 had to be controlled for fish attributes. As expected, visible volume and expanse

increase with the number of fish in the school. For NND2 and NND3, one of the selected models included

the proportion of fish on the border of the alpha shape, although the parameter was not significant. Fish on

the border of the school tend to have higher values of NND as they have less neighbours than inner fish.

Thus, the mean NND in the school is expected to increase when the proportion of border fish increases.

All selected models for density included fish attributes, either fish number or proportion of border fish in

the convex hull or alpha shape. Density was negatively correlated with the number of fish in the school

and positively correlated with the proportion of border fish. This last point is not surprising as fish number

and proportion of border fish were negatively correlated. Thus, density tends to decrease as the number

of fish in the school increases.

4.2 BRUVS

BRUVS were shown to be successful to study fish schools in situ in a non-invasive way. To our knowl-

edge, this is the first time that wild pelagic fish schools are characterised quantitatively using metrics

from the positions of individual fish in three-dimensional space, as captured on stereo-video. Previous

attempts to study wild marine fish schools using underwater footage have been made, but they involved

only one camera and assumptions around fish body size [37], which is a potential source of imprecision.
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4.3 Metrics and challenges

In this study, school volume was computed as both a convex hull and an alpha shape. The convex hull

is easier to compute but does not take into account concavities in the group. Volume might thus be over-

estimated and the density under-estimated. The alpha shape, which takes concavities into account, is

more precise. However there is no absolute way to calculate the non-convex border of a cloud point,

and the radius R of the concavities that are removed from the convex hull has to be arbitrarily set. If this

radius is too high, the shape will converge to the convex hull, and if the radius is too low the set of points

may be split into several non-convex shapes. When working on a large set of points, the radius can be

set by checking the size of aggregation concavities, which is done by plotting the aggregation density as

a function of R [20]. However, working with schools containing relatively few fish (FN = 6-51, Table

3) precludes such an approach. Instead, we first computed a list of the different radius values which

result in different alpha shapes, and then used trial and error to find the appropriate value of R which

returned the smallest envelope corresponding to one polyhedron. However, this method may require a

long computation time if used for large groups (FN > 100). Alpha shapes are particularly adapted for

non-convex school shapes such as tori, for which a convex hull modelling would lead to a disc, with a

bigger volume than the torus. They are mostly used for bird flocks containing hundreds of individuals

and susceptible to displaying concavities.

Here, both methods show very similar results in terms of explained variance and parameters for visible

school volume. For density, both computations do not return the same best model, but all selected models

have close values of wAIC and are within the same range of explained variance. Thus convex hull and

alpha shape computations produce very similar results in our study.

4.4 Limits of the study

Fish schooling behaviour might also be affected by other environmental factors, as demonstrated in many

ex situ studies. All BRUVS surveys have been carried out during day light, and although luminosity may

vary due to weather conditions, these variations are likely not sufficient to affect schooling behaviour

[22]. Possible variation in turbidity between days and surveys might affect schooling behaviour [23].

Similarly, current intensity can affect schooling behaviour [21]. Carbone dioxyde level and pH variations

have not been documented to affect school structure ex situ [5]. To our knowledge, the effects of salinity

on schooling behaviour are yet to be explored.

Terrestrial predators are usually classified in apex predators, i.e. large animals occupying the highest

trophic level and structuring food webs by affecting lower level organisms via predation and behavioural

changes. However this classification is quite artificial, since a species can be an apex predator in an

ecosystem and a mesopredator in another ecosystem with larger predators [13]. Predator classification
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in marine ecosystems is also affected by this bias, and numerous sharks classified as apex predators

on coral reefs actually act as mesopredators, along with large-bodied teleosts [13, 12]. Moreover, such

classification for sharks in marine ecosystems should also take into account size of individuals and life

stage as these factors influence trophic level [39]. Defining such predator’s role in the open ocean is even

a harder task due to the lack of sampling in this remote biome.

4.5 Conclusion

This work brings to light the effects of predator abundance on forage fish schooling behaviour. Such

information is crucial in a context of declining predators and overexploitation of forage fish which are a

major link between low and high trophic levels.

Further investigations should be conducted to confirm these results across a wider range of predator

abundances. Studies on schooling behaviour related to in situ oxygen level would also be needed to

confirm our hypothesis.
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Abstract

Forage fish (e.g. anchovies, pilchards, scads) are a major trophic link between plankton and larger preda-

tors, for which they are a major prey item. They are also intensively exploited by humans, mostly for

non-food uses, and are easy to catch as they congregate in large schools from hundreds to thousands of

individuals.

The effects of predator loss on lower trophic levels in pelagic ecosystems are little understood. We inves-

tigate the effects of predator abundance on the internal structure of fish schools using scads (Decapterus

sp.) schools as a model taxon. We use baited remote underwater stereo-video systems (stereo-BRUVS)

to provide the first quantitative description of pelagic fish schools in three-dimensional space, in five

study locations varying in levels of predator abundance.

Our results show that contrary to expectations, schools are less tight in areas with higher predator abun-

dance. Indeed, after controlling for fish attributes, we found that nearest neighbour distances, distance to

school centre and volume increased with predator abundance, while density decreased. We hypothesise

that schooling behaviour is driven by oxygen level in addition to predator abundance, and that schooling

fish maintain higher distances from congeners in areas where predation risk is high to satisfy the oxygen

demands associated with a flight response to potential predator attacks.
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