

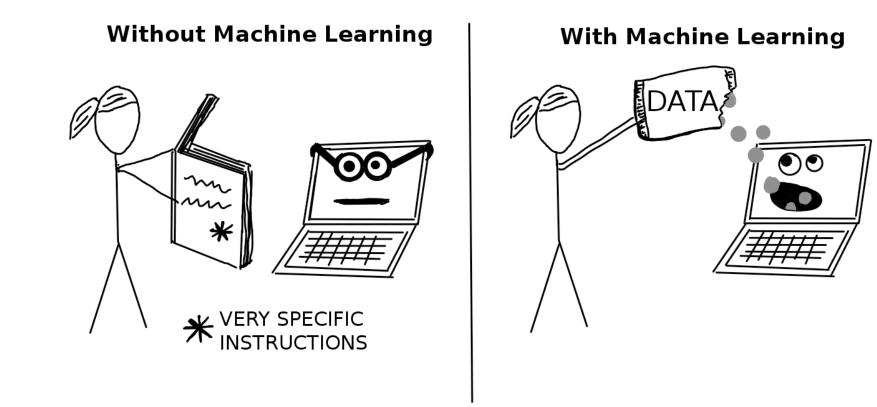
National Oceanography Centre

Machine Learning for feature detection

Linking zooplankton diversity and particulate organic carbon (POC)

Thelma Panaïotis thelma.panaiotis@noc.ac.uk

A Machine Learning definition

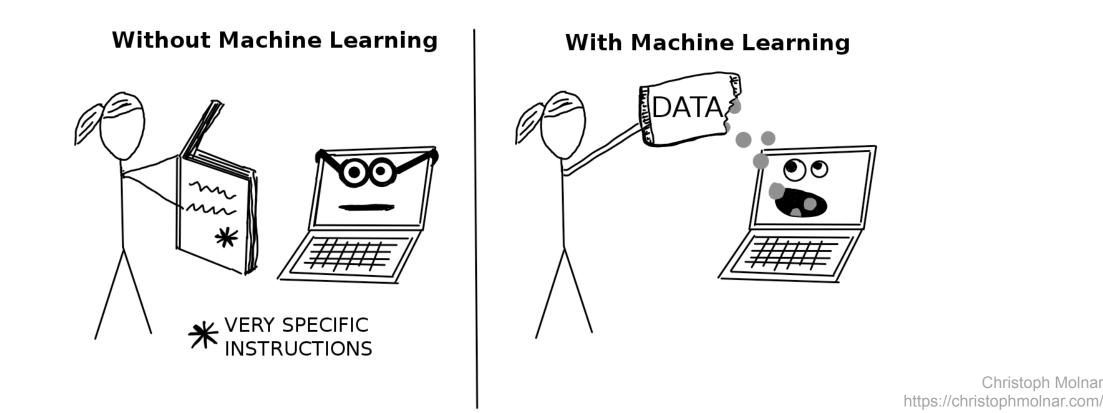


Christoph Molnar https://christophmolnar.com/

National Oceanography Centre

Christoph Molnar

ML: finding patterns in data, without specific instruction, and possibly predicting outcome for new data



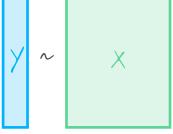
2

A Machine Learning definition

g outcome for new data

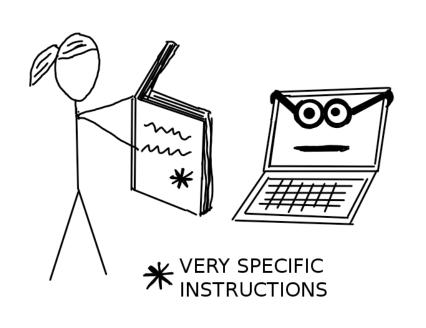
ML: finding patterns in data, without specific instruction, and possibly predicting outcome for new data

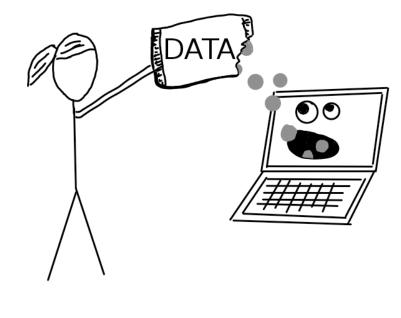
targetfeaturesSupervisedML: relating response variable(s) to predictors



Without Machine Learning

With Machine Learning

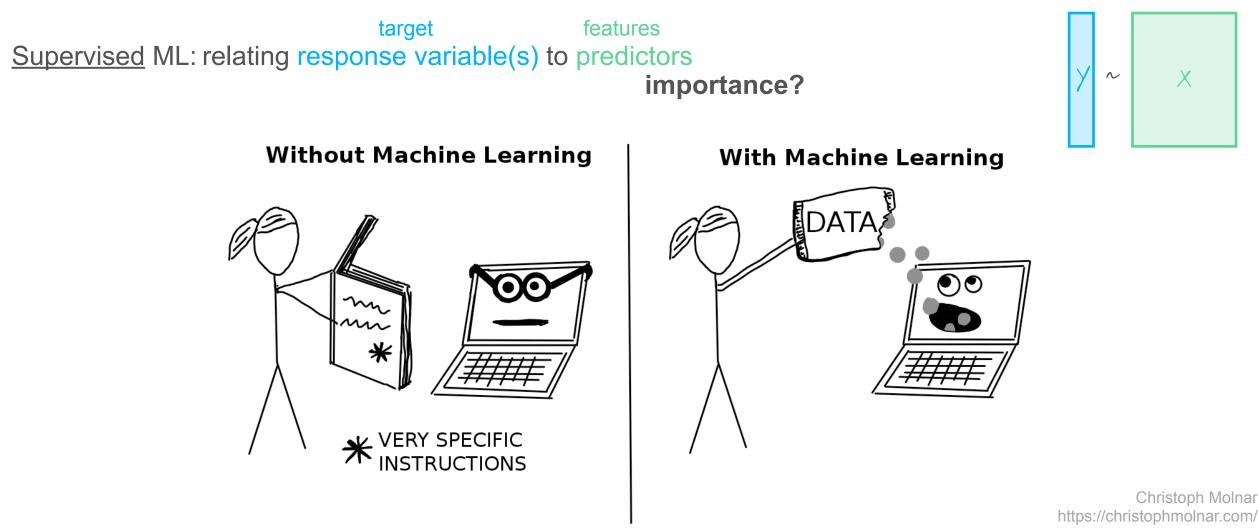




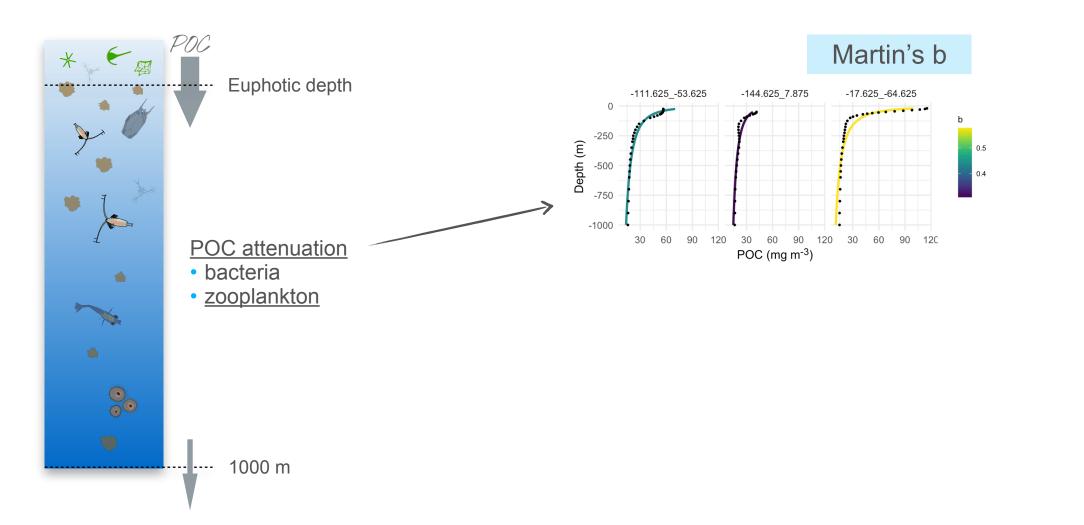
Christoph Molnar https://christophmolnar.com/

A Machine Learning definition

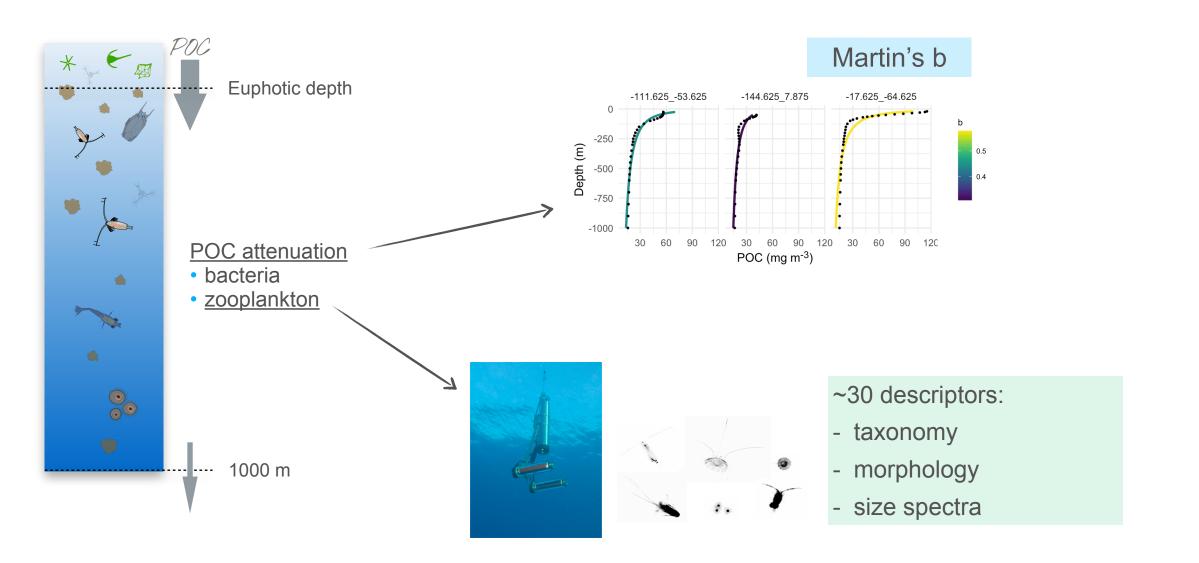
ML: finding patterns in data, without specific instruction, and possibly predicting outcome for new data



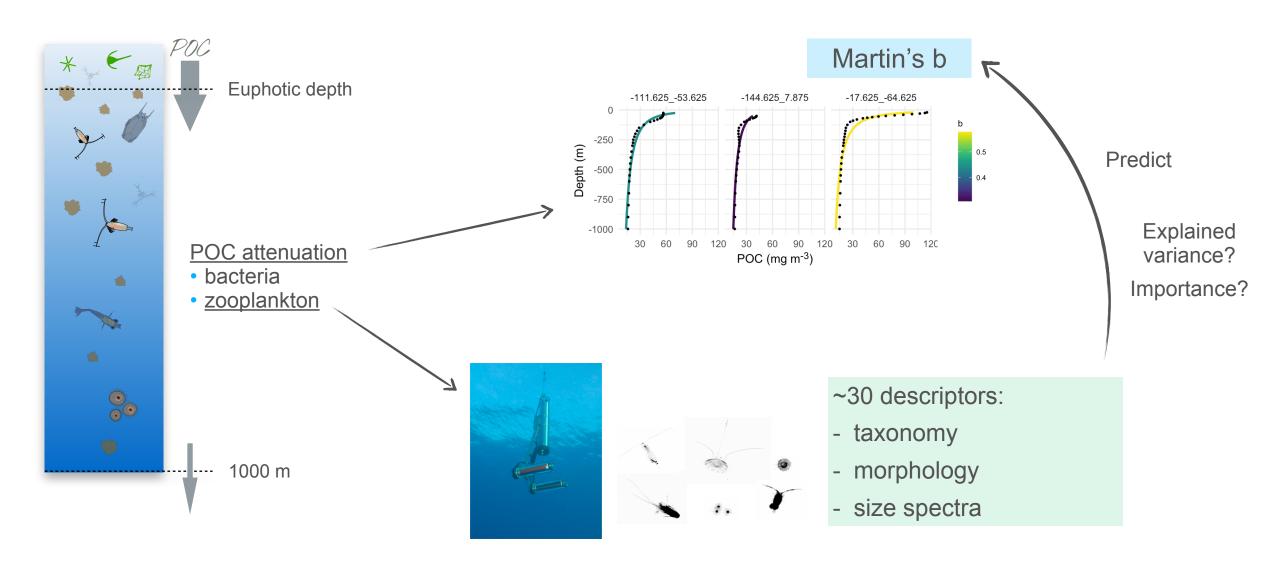
Context: relating POC attenuation to zooplankton diversity



Context: relating POC attenuation to zooplankton diversity



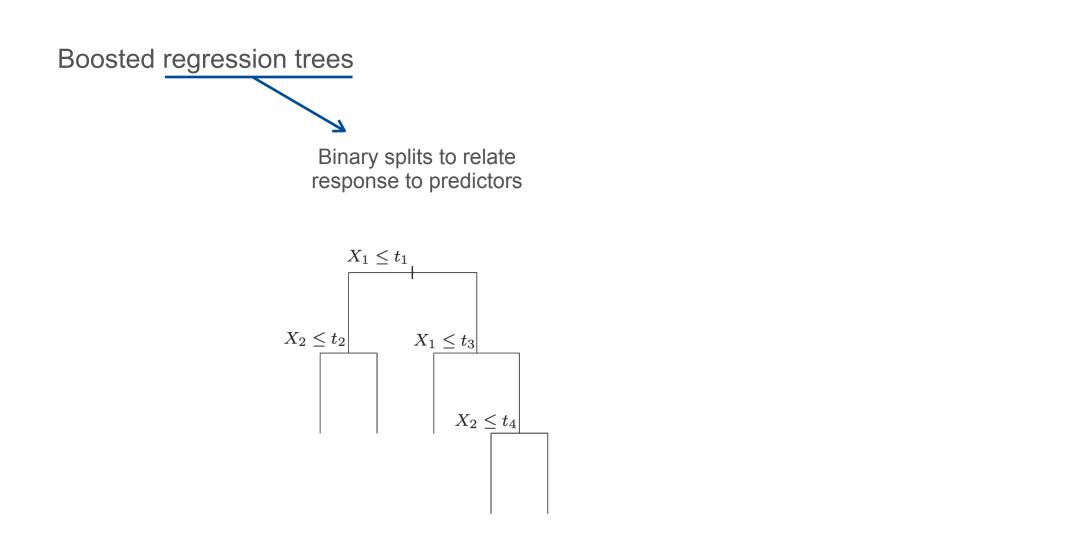
Context: relating POC attenuation to zooplankton diversity



Context: relating POC attenuation to zooplankton diversity

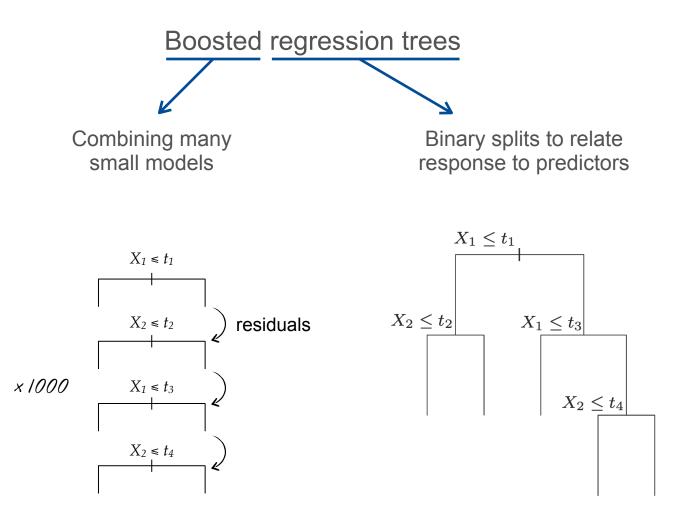
Boosted regression trees

Context: relating POC attenuation to zooplankton diversity

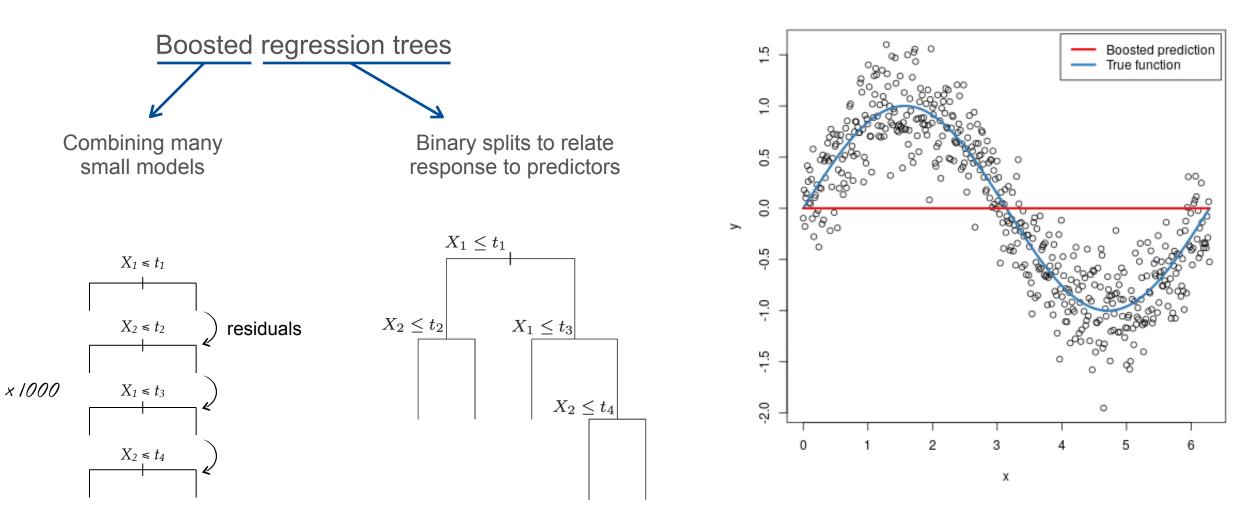


4

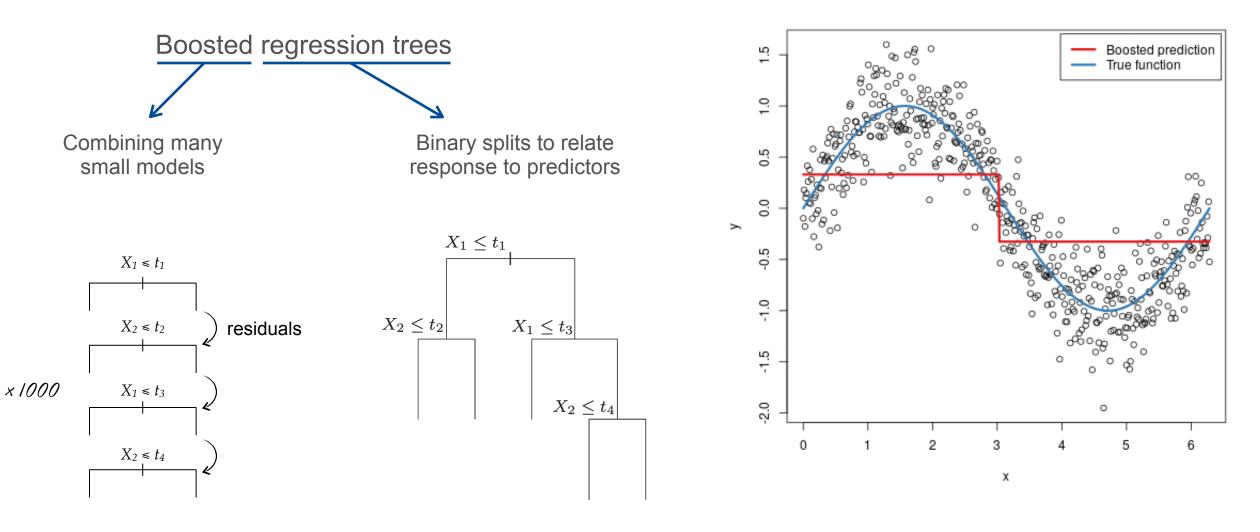
Context: relating POC attenuation to zooplankton diversity



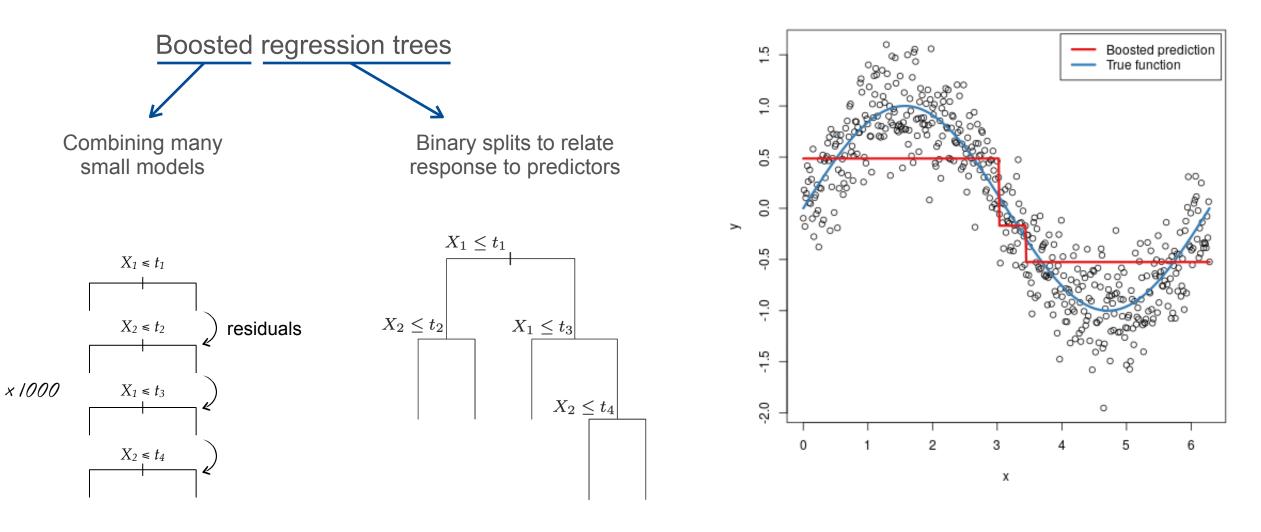
Context: relating POC attenuation to zooplankton diversity



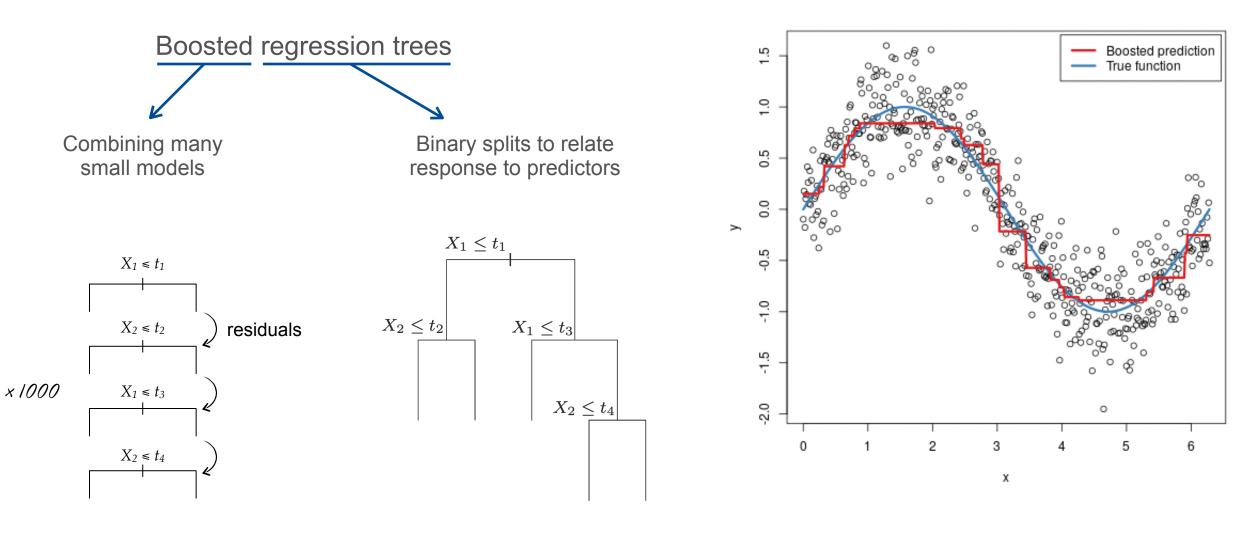
Context: relating POC attenuation to zooplankton diversity



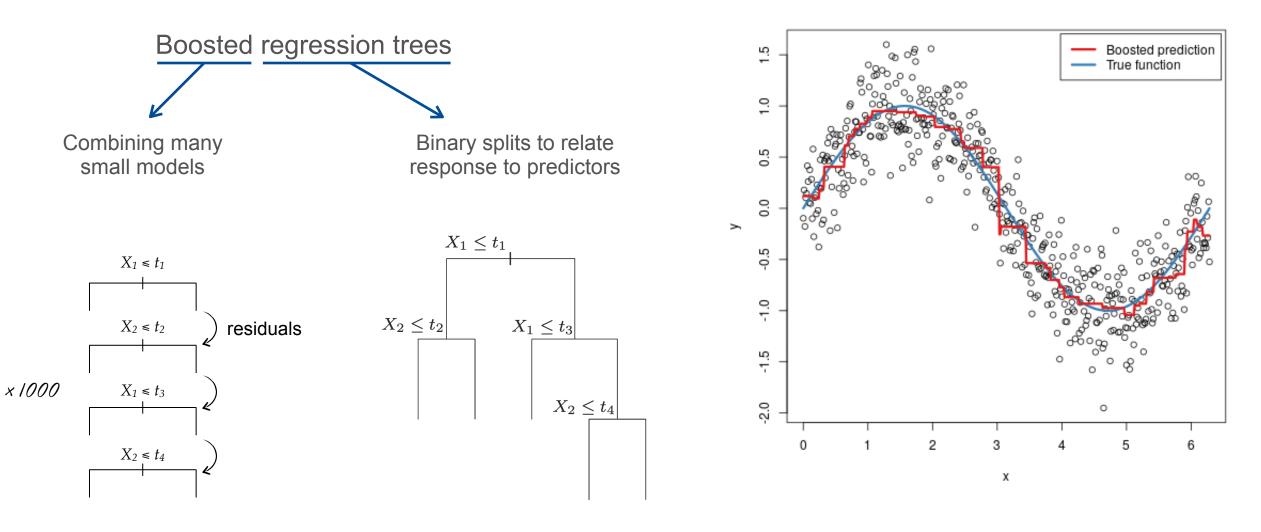
Context: relating POC attenuation to zooplankton diversity



Context: relating POC attenuation to zooplankton diversity

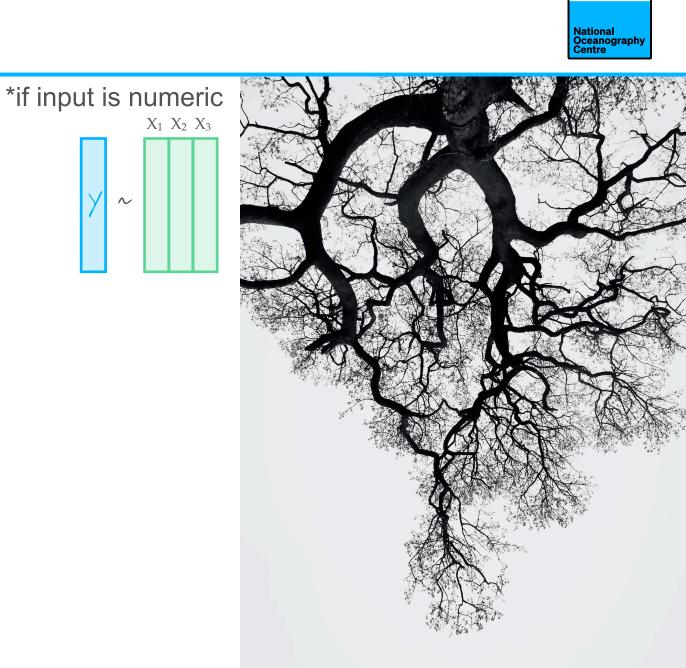


Context: relating POC attenuation to zooplankton diversity



ML PRO TIP #1 "Choose an appropriate model"

Tree ensembles are fantastic*



 \sim

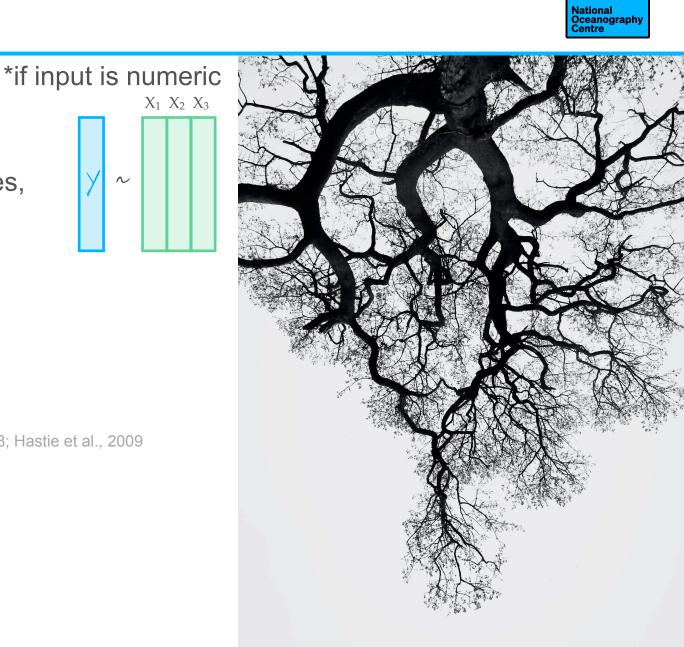
Tree ensembles are fantastic*

Many advantages:

- input flexibility (type, distribution, missing values, relevance)
- complex non-linear relationships + interactions
- good predictive power
- interpretable
- many implementations (R, Python) •

Elith et al., 2008; Hastie et al., 2009

 \sim



Tree ensembles are fantastic*

Many advantages:

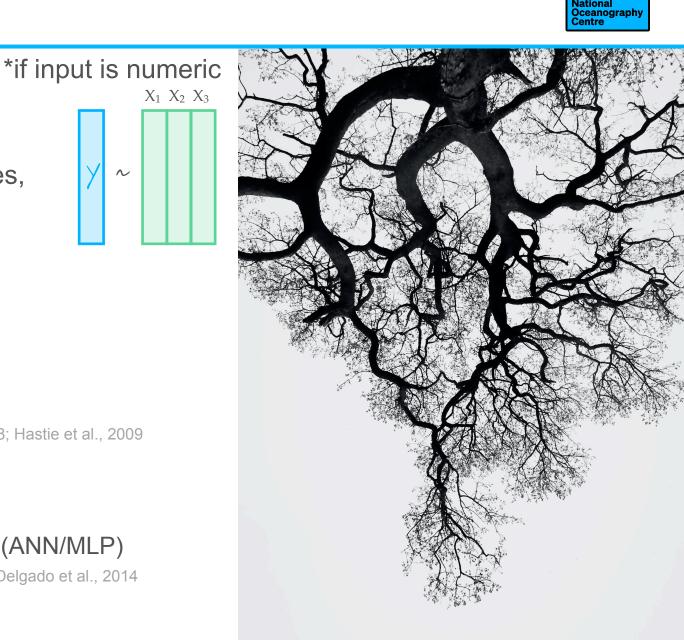
- input flexibility (type, distribution, missing values, relevance)
- complex non-linear relationships + interactions
- good predictive power
- interpretable
- many implementations (R, Python)

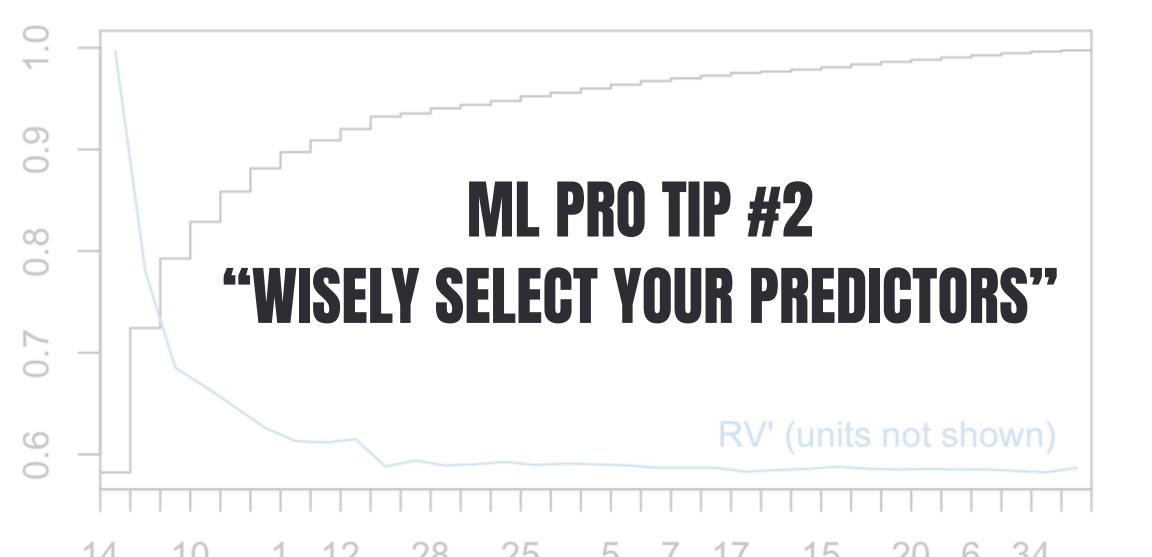
Elith et al., 2008; Hastie et al., 2009

Classification: tree ensembles (RF) > neural network (ANN/MLP)

Regression?

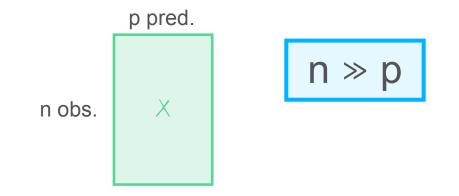
Fernández-Delgado et al., 2014





Less is more

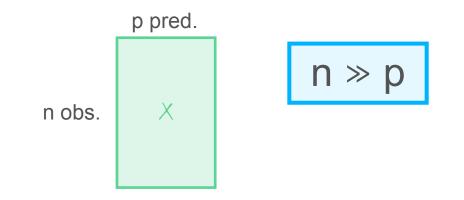
Number of predictors/features VS number of observations.



Less is more

Number of predictors/features VS number of observations.

Trees can ignore non-relevant predictors.



Less is more

Number of predictors/features VS number of observations.

Trees can ignore non-relevant predictors.

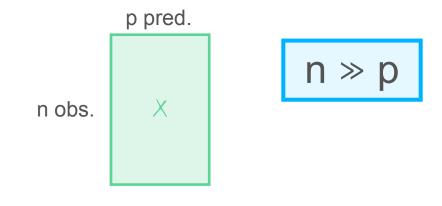
Parsimony

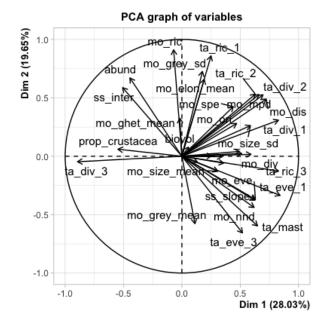
Feature selection

- PCA
- Escoufier's equivalent vectors
- VIF

Feature engineering

• PCA: use PCs as predictors





Number of predictors/features VS number of observations.

Trees can ignore non-relevant predictors.

Parsimony

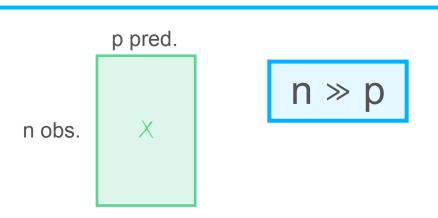
Feature selection

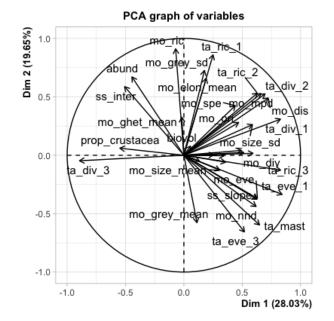
- PCA
- Escoufier's equivalent vectors
- VIF

Correlated features? Depends on your model. Tree ensembles are fairly robust.

Feature engineering

• PCA: use PCs as predictors





9

ML PRO TIP #3 "Manage your data budget"

~80% Train VS Test ~20%

Fit the model

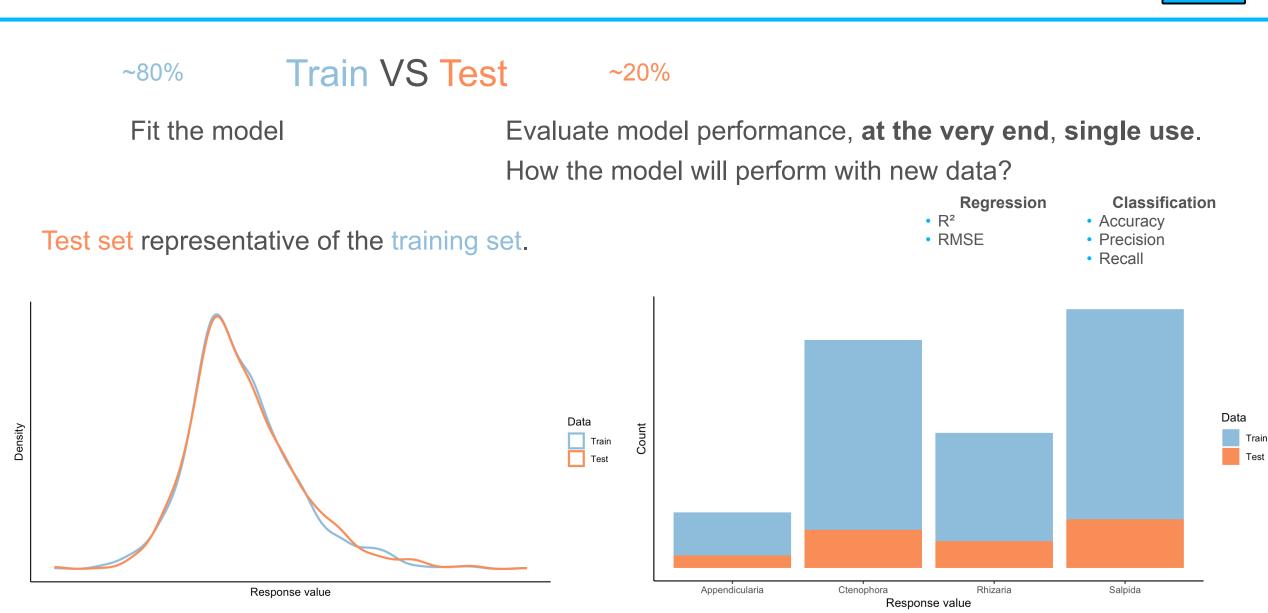
Evaluate model performance, **at the very end**, **single use**. How the model will perform with new data?

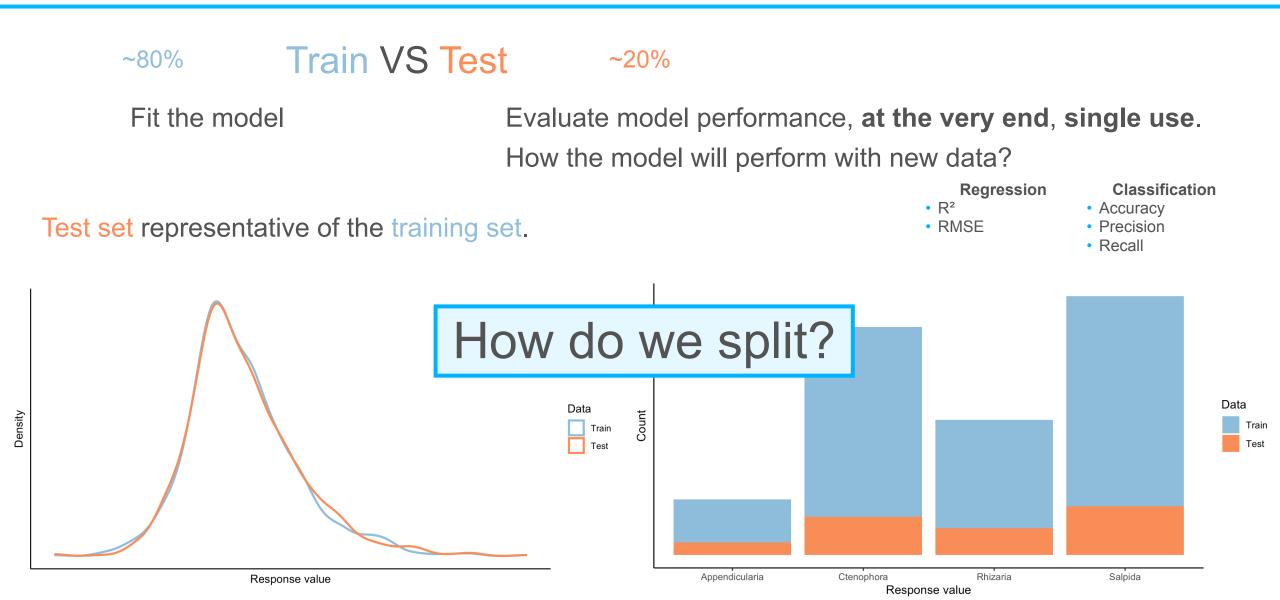
Regression

Classification

• R² • RMSE

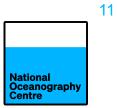
- Accuracy
- Precision
- Recall

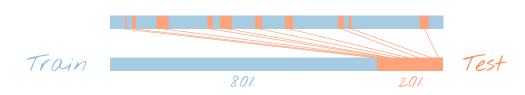


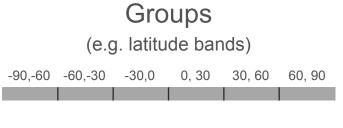


Need to spend the data

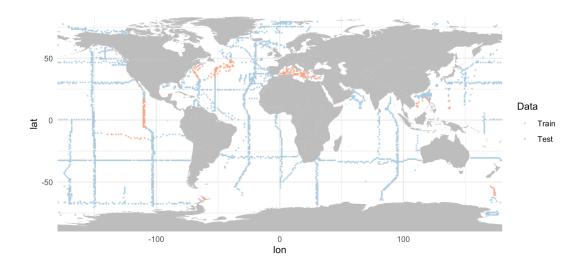
How to split your data





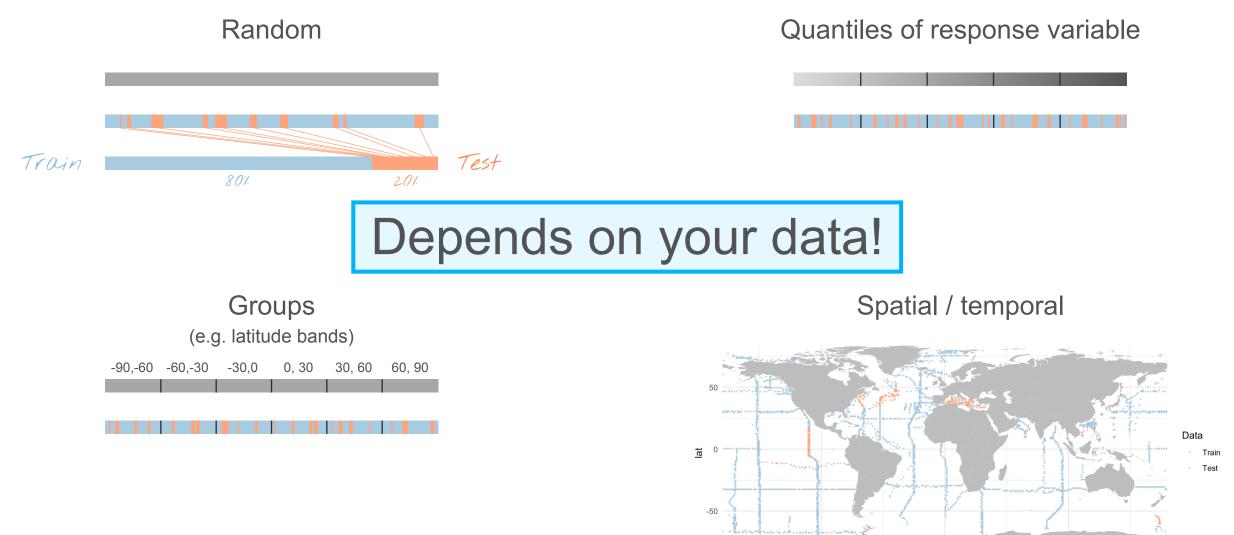


Spatial / temporal



How to split your data





-100

0

lon

100

ML PRO TIP #4 "Some ML Models need to be tuned"

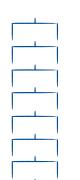
Tree ensembles

Boosted trees

Depth of trees

Number of trees

. . .



Tree ensembles

Boosted trees

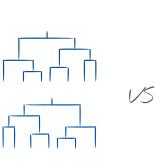
Depth of trees

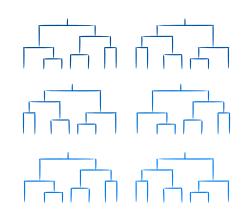
Random Forest

Number of trees



Number of trees

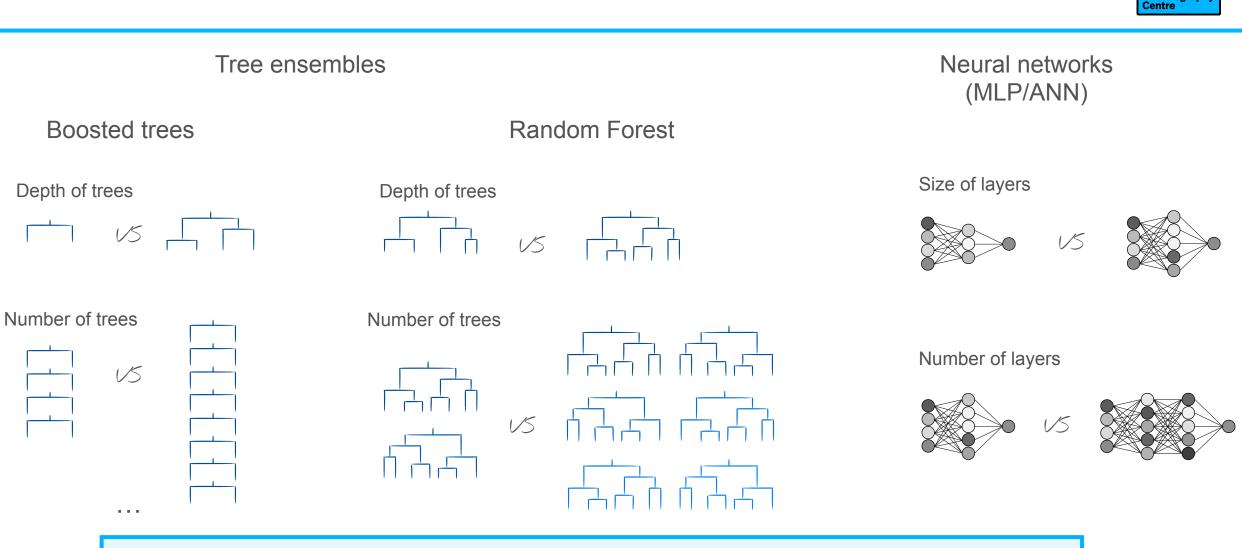




National Oceanography Centre

Tree ensembles Neural networks (MLP/ANN) Boosted trees Random Forest Size of layers Depth of trees Depth of trees 1/5 VS Number of trees Number of trees Number of layers VS 1/5 . . .

13



 \rightarrow to be tuned: model tuning / gridsearch

National Oceanography

Example for boosted regression trees

Tuning the tree depth

Example for boosted regression trees

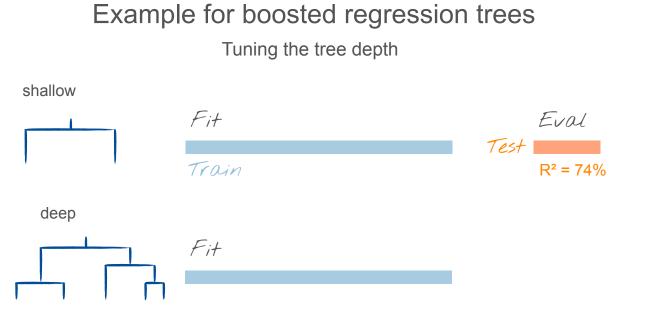
Tuning the tree depth

shallow

Fit Train

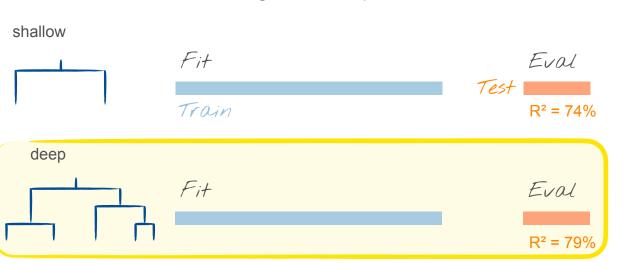
Example for boosted regression trees

Tuning the tree depth



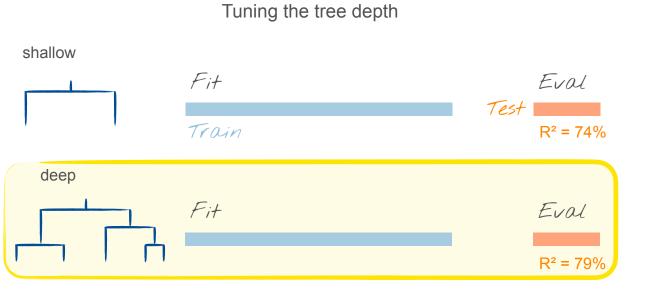
Example for boosted regression trees

Tuning the tree depth



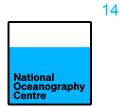
Tuning the tree depth

Example for boosted regression trees



optimising hyperparameters + estimating generalisation error

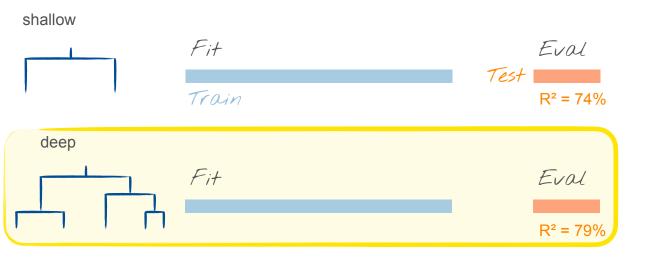
Test

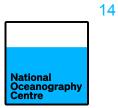




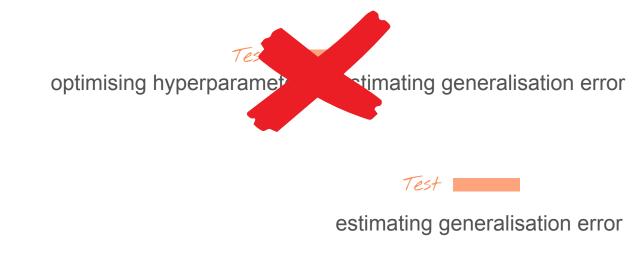
Example for boosted regression trees

Tuning the tree depth



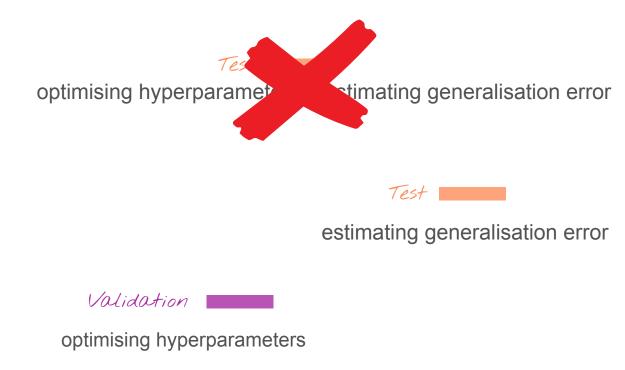


Example for boosted regression trees Tuning the tree depth shallow Fit Fit Far Fit Far Fit Far Fit Far Far

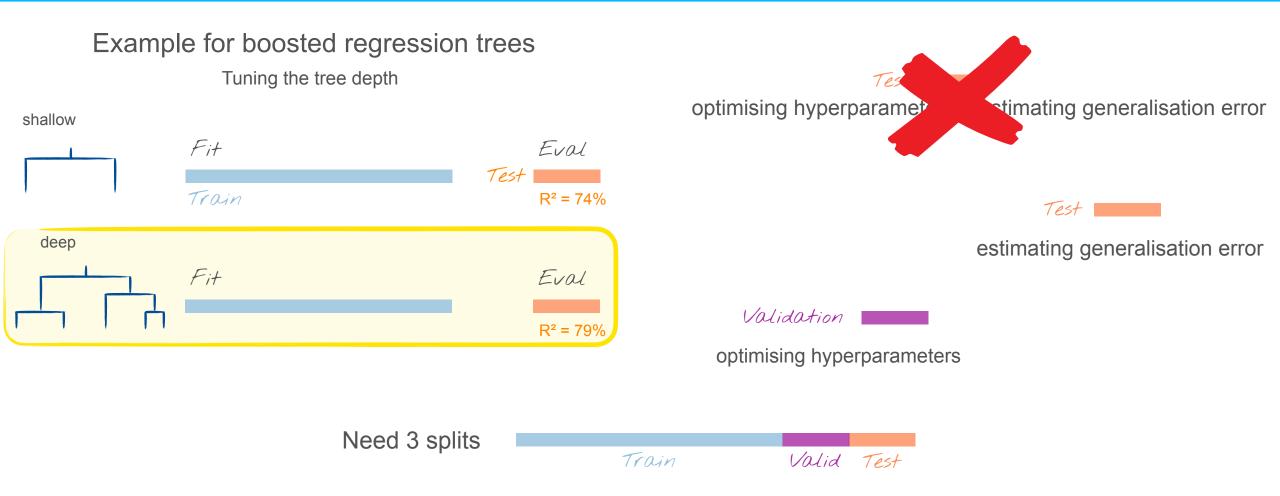


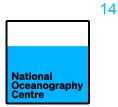


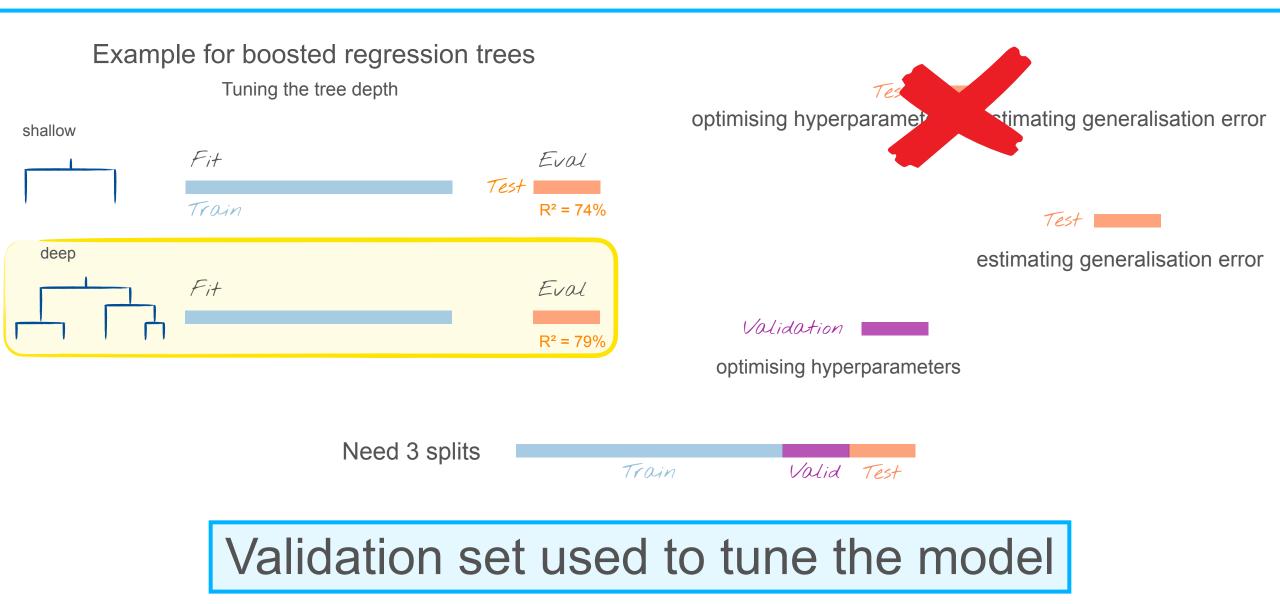
Example for boosted regression trees Tuning the tree depth shallow Fit Fit Fir Fir

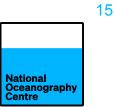












ML PRO TIP #5 "CROSS-VALIDATION CAN BE GREAT"

Overcome the effect of randomness in your splits

Overcome the effect of randomness in your splits

5 folds CV

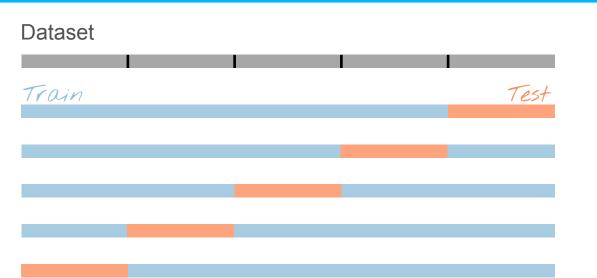
Overcome the effect of randomness in your splits

5 folds CV

Overcome the effect of randomness in your splits

5 folds CV

- \rightarrow 5 iterations
- \rightarrow 5 models fitted
- \rightarrow 5 performance estimates



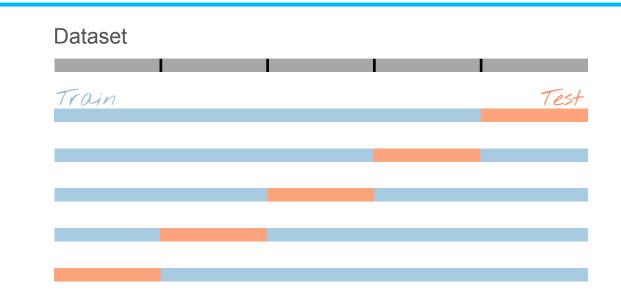
Overcome the effect of randomness in your splits

 \rightarrow 5 iterations

 \rightarrow 5 models fitted

5 folds CV

 \rightarrow 5 performance estimates

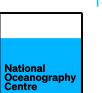


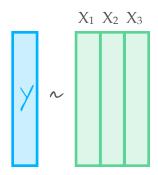
Validation and model tuning?

Overcome the effect of randomness in your splits

Validation and model tuning?

ML PRO TIP #6 "ML MODELS CAN BE INTERPRETED"

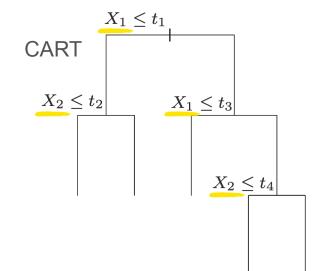


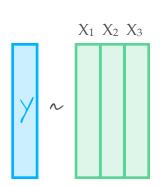


• Some models are easy to interpret

linear regression

 $Y = b + 3.7 \times X_1 + 0.01 \times X_2 + 1.6 \times X_3$

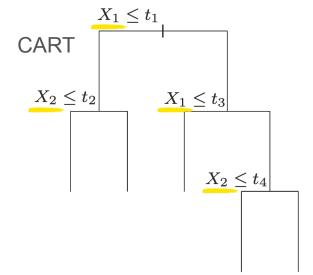


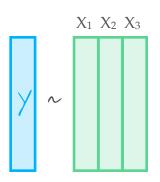


18

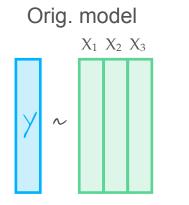
Some models are easy to interpret

linear regression $Y = b + \underline{3.7} \times X_1 + 0.01 \times X_2 + \underline{1.6} \times X_3$





• For other ones, there are workarounds

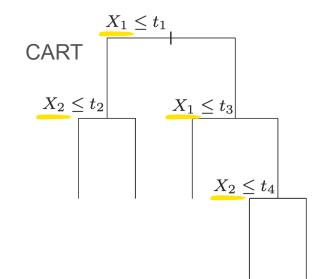


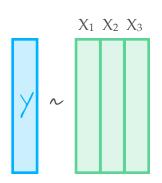
Orig. performance

18

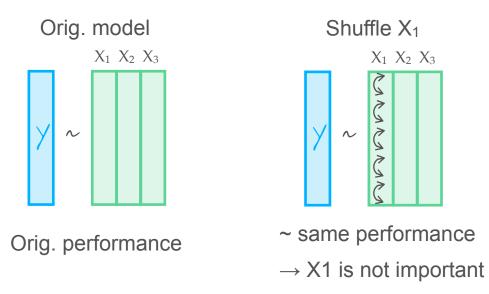
• Some models are easy to interpret

linear regression $Y = b + 3.7 \times X_1 + 0.01 \times X_2 + 1.6 \times X_3$



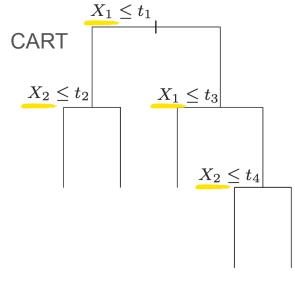


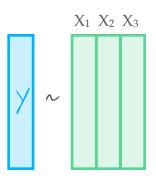
• For other ones, there are workarounds



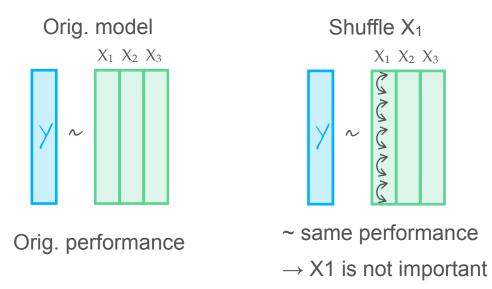
• Some models are easy to interpret

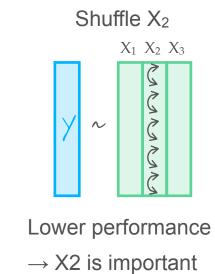
linear regression $Y = b + 3.7 \times X_1 + 0.01 \times X_2 + 1.6 \times X_3$





• For other ones, there are workarounds



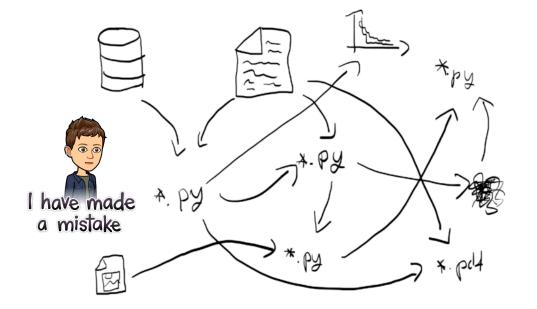


Importance of each predictor

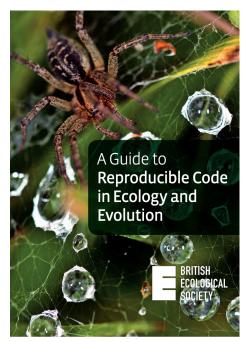
ML PRO TIP #7 "SHARE WITH OTHERS, LEARN FROM OTHERS"

The importance of version control and sharing

- Version control
 - no more mess
 - go back in time



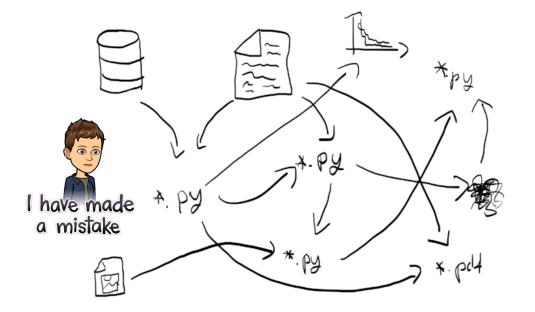
Broad Research Communication Lab



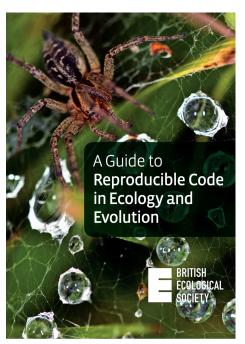
BES & Cooper, N. A Guide to Reproducible Code in Ecology and Evolution. (2017).

The importance of version control and sharing

- Version control
 - no more mess
 - go back in time



Broad Research Communication Lab



BES & Cooper, N. A Guide to Reproducible Code in Ecology and Evolution. (2017).

- Sharing
 - improve yourself
 - reproducibility

20

Conclusions

Supervised ML relates response variable(s) to predictors

• ML is neither black magic, nor a black box

ML models can be interpreted

• A few checks are essential to do it right not wrong

Multiple choices are possible, depends on your data
Thank you

