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Response Predictors

POC
Euphotic depth

1000 m

POC attenuation 
• bacteria 
• zooplankton

~30 descriptors: 
- taxonomy 
- morphology 
- size spectra

Explained 
variance? 

Importance?

Predict

Martin’s b
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ML PRO TIP #1 
“CHOOSE AN APPROPRIATE MODEL”
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Tree ensembles are fantastic*
6

Many advantages: 

• input flexibility (type, distribution, missing values, 

relevance) 

• complex non-linear relationships + interactions  

• good predictive power 

• interpretable 

• many implementations (R, Python)

*if input is numeric

Classification: tree ensembles (RF) > neural network (ANN/MLP) 

Regression?

Elith et al., 2008; Hastie et al., 2009

Fernández-Delgado et al., 2014

Y ~

X1 X2 X3
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ML PRO TIP #2 
“WISELY SELECT YOUR PREDICTORS”



Less is more
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Less is more
8

Number of predictors/features VS number of observations.

Xn obs.

p pred.

Correlated features? 
Depends on your model. Tree ensembles are fairly robust.

n ≫ p 

Trees can ignore non-relevant predictors.

Feature selection 
• PCA 
• Escoufier’s equivalent vectors 
• VIF

Feature engineering 
• PCA: use PCs as predictors

Parsimony

Hastie et al., 2009
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ML PRO TIP #3 
“MANAGE YOUR DATA BUDGET”



10

Train VS Test
Fit the model Evaluate model performance, at the very end, single use. 

How the model will perform with new data?

~80% ~20%

Regression Classification
• R² 
• RMSE 

• Accuracy 
• Precision 
• Recall

Need to spend the data



10

Test set representative of the training set.

Train VS Test
Fit the model Evaluate model performance, at the very end, single use. 

How the model will perform with new data?

~80% ~20%

Regression Classification
• R² 
• RMSE 

• Accuracy 
• Precision 
• Recall

Need to spend the data



10

Test set representative of the training set.

Train VS Test
Fit the model Evaluate model performance, at the very end, single use. 

How the model will perform with new data?

~80% ~20%

How do we split?

Regression Classification
• R² 
• RMSE 

• Accuracy 
• Precision 
• Recall

Need to spend the data
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How to split your data
11

Random Quantiles of response variable

Spatial / temporalGroups
(e.g. latitude bands)

-90,-60 -60,-30 -30,0 0, 30 30, 60 60, 90

Depends on your data!
Train Test

80% 20%
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ML PRO TIP #4 
“SOME ML MODELS NEED TO BE TUNED”
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Tree ensembles Neural networks 
(MLP/ANN)

Size of layers

Number of layers

VS

VS

Random Forest

VS

VS

Number of trees

Depth of trees

Boosted trees

VS

Number of trees

…

VS

Depth of trees

→ to be tuned: model tuning / gridsearch
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 Example for boosted regression trees
Test

optimising hyperparameters + estimating generalisation error

Validation

optimising hyperparameters

Test

estimating generalisation errordeep

Fit Eval

R² = 79%

shallow

Train

Fit Eval

R² = 74%
Test

Validation set used to tune the model

Train TestValid
Need 3 splits

Tuning the tree depth
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ML PRO TIP #5 
“CROSS-VALIDATION CAN BE GREAT”
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What about cross validation?
16

5 folds CV
→ 5 iterations
→ 5 models fitted
→ 5 performance estimates 

Train Test

Overcome the effect of randomness in your splits Dataset

Validation and model tuning?

Initial split Train Test

CV for tuning ValidTrain

Nested CV
Initial split + CV

…
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ML PRO TIP #6 
“ML MODELS CAN BE INTERPRETED”
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ML models are not black boxes
18

• Some models are easy to interpret

• For other ones, there are workarounds

linear regression

Y = b + 3.7 × X1 + 0.01 × X2 + 1.6 × X3

CART

Y ~

X1 X2 X3

Orig. model

Orig. performance

Y ~

X1 X2 X3

Shuffle X1

~ same performance 

→ X1 is not important

Y ~

X1 X2 X3

Shuffle X2

Lower performance  

→ X2 is important

… Importance of 
each predictor

Y ~

X1 X2 X3

Breiman 2001



ML PRO TIP #7 
“SHARE WITH OTHERS,  
LEARN FROM OTHERS”

19
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The importance of version control and sharing
20

• Version control 

• no more mess 

• go back in time

• Sharing  

• improve yourself 

• reproducibility

BES & Cooper, N. A Guide to 
Reproducible Code in Ecology 

and Evolution. (2017).

Broad Research Communication Lab



• Supervised ML relates response variable(s) to predictors 

• ML is neither black magic, nor a black box 

• ML models can be interpreted 

• A few checks are essential to do it right 

• Multiple choices are possible, depends on your data

Conclusions
21

Thank you

not wrong
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On the importance of the validation set
22

Test set n°1 Test set n°2

CV fold

85.1% 84.4%Overall avg

Best model 82.5% 84.0%

TestValidation

optimising hyperparameters

Test

estimating generalisation error

Model or 
Hyperparameter set


