

Content-aware segmentation of plankton images

T Panaïotis, L Caray—Counil, B Woodward, MS Schmid, D Daprano, STTsai, CM Sullivan, RK Cowen, JO Irisson

Computational Plankton Ecology (COMPLEx team) Laboratoire d'Océanographie de Villefranche

Thelma Panaïotis

ISIIS

In Situ Ichthyoplankton Imaging System

- organisms in 250 µm 10 cm
- shadowgraphy
- deep depth of field
- high sampling rate (108 L.s⁻¹)

Cowen et al., 2008

Extract plankton from ISIIS images A challenging task

Changing background

Grumstrup et al., 2017

Very large size range of organisms

area ×6000

Segmentation methods Threshold (T)

Adjacent dark pixels

250

4

Segmentation methods Threshold-MSER (T-MSER)

Maximally Stable Extremal Regions

Multi-threshold segmentation

Matas et al., 2004

250

5

Segmentation methods Threshold-CNN (T-CNN)

Adaptive thresholding merge CNN-based object detection 100 Oetectron2

Comparison to ground truth segmentation **Bbox IoU criterion**

True positive

|0| > 0.1Match

Match \leftrightarrow Bbox Intersection over Union > 0.1

- False positive
- > precision

False negative > recall

|0| < 0.1No match

|0| < 0.1No match

Results

Global performances: precision and recall

1.0

Results Per size class

Segmentation pipeline

А [100,1e+06)-[90, 100)Automated segments bounding box diagonal (px) [80,90)-P [70,80)-[60,70)-[50,60)-[40,50) -[30,40)pr [20,30)-[10,20) 0.50 Precision 0.25 0.00

			T-MSER: lower recall for very
	_		large and very small plankton
T-MSER: better recision for large plankton T-CNN: better	В [100,1e+06) n=105		
	ind truth segments bounding box diagonal (px)	[90,100) n=20	
		[80,90) n=18	
		[70,80) n=27	
		[60,70) n=68	T-CNN: lower influence of
		[50,60) n=110	size on recall
		[40,50) n=218	
		[30,40) n=681	
plankton	Grou	[20,30) n=1522	
		[10,20) n=587	
0.75 1.00 1		0.00	0 0.25 0.50 0.75 1.00 Recall

- In situ imaging \rightarrow many non living objects
- T-MSER: high processing rate (1.2x)
- T-CNN: better performances, requires a GPU, fast enough (0.03x), within reach of ecologists
- Intelligent methods: fewer objects to sort in the future

frontiers Frontiers in Marine Science

ORIGINAL RESEARCH published: 06 June 2022 doi: 10.3389/fmars.2022.870005

Content-Aware Segmentation of Objects Spanning a Large Size Range: Application to Plankton Images

Thelma Panaïotis^{1*}, Louis Caray–Counil¹, Ben Woodward², Moritz S. Schmid³, Dominic Daprano⁴, Sheng Tse Tsai⁴, Christopher M. Sullivan⁴, Robert K. Cowen³ and Jean-Olivier Irisson¹

OPEN ACCESS

Edited by:

Mark C. Benfield, Louisiana State University, United States

Reviewed by:

Damianos Chatzievangelou Self-employed, Greece Francesco Pomati, Swiss Federal Institute of Aquatic Science and Technology, Switzerland

*Correspondence:

¹ Laboratoire d'Océanographie de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France, ² CVision AI, Medford, MA, United States, ³ Hatfield Marine Science Center, Oregon State University, Newport, OR, United States, ⁴ Center for Quantitative and Life Science, Oregon State University, Corvallis, OR, United States

As the basis of oceanic food webs and a key component of the biological carbon pump, planktonic organisms play major roles in the oceans. Their study benefited from the development of in situ imaging instruments, which provide higher spatio-temporal resolution than previous tools. But these instruments collect huge quantities of images, the vast majority of which are of marine snow particles or imaging artifacts. Among them, the In Situ Ichthyoplankton Imaging System (ISIIS) samples the largest water volumes (> 100 L s⁻¹) and thus produces particularly large datasets. To extract manageable amounts of ecological information from *in situ* images, we propose to focus on planktonic organisms early in the data

https://www.frontiersin.org/articles/10.3389/fmars.2022.870005/full

Thanks to all co-authors, cruise members, and funders.

Extreme Science and Engineering Discovery Environment

Thank you for your attention

Thelma Panaïotis thelma.panaiotis@imev-mer.fr

https://github.com/jiho/apeep https://github.com/paradom/Threshold-MSER

